1
|
Zhang D, Hua Z, Li Z. The role of glutamate and glutamine metabolism and related transporters in nerve cells. CNS Neurosci Ther 2024; 30:e14617. [PMID: 38358002 PMCID: PMC10867874 DOI: 10.1111/cns.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Glutamate and glutamine are the most abundant amino acids in the blood and play a crucial role in cell survival in the nervous system. Various transporters found in cell and mitochondrial membranes, such as the solute carriers (SLCs) superfamily, are responsible for maintaining the balance of glutamate and glutamine in the synaptic cleft and within cells. This balance affects the metabolism of glutamate and glutamine as non-essential amino acids. AIMS This review aims to provide an overview of the transporters and enzymes associated with glutamate and glutamine in neuronal cells. DISCUSSION We delve into the function of glutamate and glutamine in the nervous system by discussing the transporters involved in the glutamate-glutamine cycle and the key enzymes responsible for their mutual conversion. Additionally, we highlight the role of glutamate and glutamine as carbon and nitrogen donors, as well as their significance as precursors for the synthesis of reduced glutathione (GSH). CONCLUSION Glutamate and glutamine play a crucial role in the brain due to their special effects. It is essential to focus on understanding glutamate and glutamine metabolism to comprehend the physiological behavior of nerve cells and to treat nervous system disorders and cancer.
Collapse
Affiliation(s)
- Dongyang Zhang
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhongyan Hua
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhijie Li
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
2
|
Ito T, Yoshida M, Aida T, Kushima I, Hiramatsu Y, Ono M, Yoshimi A, Tanaka K, Ozaki N, Noda Y. Astrotactin 2 (ASTN2) regulates emotional and cognitive functions by affecting neuronal morphogenesis and monoaminergic systems. J Neurochem 2023; 165:211-229. [PMID: 36807153 DOI: 10.1111/jnc.15790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
Astrotactin2 (ASTN2) regulates neuronal migration and synaptic strength through the trafficking and degradation of surface proteins. Deletion of ASTN2 in copy number variants has been identified in patients with schizophrenia, bipolar disorder, and autism spectrum disorder in copy number variant (CNV) analysis. Disruption of ASTN2 is a risk factor for these neurodevelopmental disorders, including schizophrenia, bipolar disorder, autism spectrum disorder, and attention deficit hyperactivity disorder. However, the importance of ASTN2 in physiological functions remains poorly understood. To elucidate the physiological functions of ASTN2, we investigated whether deficiency of ASTN2 affects cognitive and/or emotional behaviors and neurotransmissions using ASTN2-deficient mice. Astn2 knockout (KO) mice produced by CRISPR/Cas9 technique showed no obvious differences in physical characteristics and circadian rhythm. Astn2 KO mice showed increased exploratory activity in a novel environment, social behavior and impulsivity, or decreased despair-, anxiety-like behaviors and exploratory preference for the novel object. Some behavioral abnormalities, such as increased exploratory activity and impulsivity, or decreased exploratory preference were specifically attenuated by risperidone, but not by haloperidol. While, the both drugs did not affect any emotion-related behavioral abnormalities in Astn2 KO mice. Dopamine contents were decreased in the striatum, and serotonin or dopamine turnover were increased in the striatum, nucleus accumbens, and amygdala of Astn2 KO mice. In morphological analyses, thinning of neural cell layers in the hippocampus, reduction of neural cell bodies in the prefrontal cortex, and decrease in spine density and PSD95 protein in both tissues were observed in Astn2 KO mice. The present findings suggest that ASTN2 deficiency develops some emotional or cognitive impairments related to monoaminergic dysfunctions and abnormal neuronal morphogenesis with shrinkage of neuronal soma. ASTN2 protein may contribute to the pathogenic mechanism and symptom onset of mental disorders.
Collapse
Affiliation(s)
- Takahiro Ito
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Mikio Yoshida
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Tomomi Aida
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Yuka Hiramatsu
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Maiko Ono
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
- Clinical OMICs and Translation Research Center, Meijo University, Nagoya, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Clinical OMICs and Translation Research Center, Meijo University, Nagoya, Japan
| |
Collapse
|