1
|
Yan BC, Wang J, Cao J, Won MH. Less hippocampal neuronal death in young gerbils following transient global cerebral ischemia is associated with long‑term maintenance of insulin‑like growth factor 1 and its receptors in the hippocampal CA1 region. Mol Med Rep 2017; 17:3055-3061. [PMID: 29257289 PMCID: PMC5783526 DOI: 10.3892/mmr.2017.8243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/13/2017] [Indexed: 01/03/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a well-known growth factor with well-defined neuroprotective effects against cerebral ischemia. However, the age‑dependent differences in the expression of IGF‑1 and its receptor (IGF‑1R) in the brain following transient cerebral ischemia (TCI) have not been elucidated. In the present study, the differences in IGF‑1 and IGF‑1R in the gerbil hippocampal CA1 region of young and adult gerbils 5 min following TCI were determined. Seven days following TCI, the neuronal death in the hippocampal CA1 region of young gerbils was significantly less than that observed in adult gerbils. In addition, the immunoreactivity, and levels of IGF‑1 and IGF‑1R in the CA1 region of the normal young were higher than those in the normal adult. Four days following TCI, the immunoreactivity, and protein levels of IGF‑1 and IGF‑1R were markedly decreased in the adult group. By contrast, in the young group, the immunoreactivity and expression levels were much greater than those in the adult group. However, 7 days following TCI, all immunoreactivity and expression levels were markedly decreased when compared with those in the normal adult and young groups. In addition, the immunoreactivity and expression levels in the young groups were significantly higher than those of the adult groups. In conclusion, the present study demonstrated that the higher and sustained expression of IGF‑1 and IGF‑1R in the young gerbil hippocampal CA1 region following TCI may be associated with the reduced neuronal death compared to that in the adults.
Collapse
Affiliation(s)
- Bing Chun Yan
- Department of Traditional Chinese and Western Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225001, P.R. China
| | - Jie Wang
- Department of Traditional Chinese and Western Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225001, P.R. China
| | - Jianwen Cao
- Department of Traditional Chinese and Western Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225001, P.R. China
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| |
Collapse
|
2
|
Mele M, Alò R, Avolio E, Canonaco M. Bcl-2/Bax Expression Levels Tend to Influence AMPAergic Trafficking Mechanisms During Hibernation in Mesocricetus auratus. J Mol Neurosci 2014; 55:374-84. [DOI: 10.1007/s12031-014-0342-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/23/2014] [Indexed: 01/13/2023]
|
3
|
Yan BC, Ohk TG, Ahn JH, Park JH, Chen BH, Lee JC, Lee CH, Shin MC, Hwang IK, Moon SM, Cho JH, Won MH. Differences in neuronal damage and gliosis in the hippocampus between young and adult gerbils induced by long duration of transient cerebral ischemia. J Neurol Sci 2013; 337:129-36. [PMID: 24321754 DOI: 10.1016/j.jns.2013.11.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/29/2013] [Accepted: 11/20/2013] [Indexed: 01/09/2023]
Abstract
Response to cerebral ischemia in young animals was very different from that in the adult. The aim of this study was to investigate differences in neuronal death and gliosis in the hippocampal CA1 region (CA1) between adult and young gerbils following 5 and 15 min of transient cerebral ischemia. Delayed neuronal death (DND) of pyramidal cells occurred in the CA1 was similar in all the adult gerbils after 5 and 15 min of ischemia: the DND occurred 4 days after ischemia. In the young groups, DND of pyramidal cells in the CA1 region occurred 7 and 3 days after 5 and 15 min of ischemia, respectively. On the other hand, the activation of GFAP-immunoreactive ((+)) astrocytes and Iba-1(+) microglia was different in the young groups from the adult groups after ischemia. The change pattern of GFAP immunoreactivity in the adult groups was similar in both the adult groups after ischemia; in the young groups, the activation of GFAP(+) astrocytes after 5 min of ischemia was much delayed than that after 15 min of ischemia. Activated Iba-1(+) microglia were aggregated in the stratum pyramidale 4 days after ischemia in all the adult ischemia-operated groups; in the young groups, activated Iba-1(+) microglia were aggregated in the stratum pyramidale 7 days after 5 min of ischemia and 3 days after 15 min of ischemia. These observations indicate that DND in young animals is very different from the adult according to different duration of transient cerebral ischemia and glial activation is very different in young animals after different duration of transient ischemia.
Collapse
Affiliation(s)
- Bing Chun Yan
- Department of Integrative Traditional & Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Taek Geun Ohk
- Department of Emergency Medicine, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 150-950, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 200-702, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Choong Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 330-714, South Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong 445-170, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea; Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea; Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea.
| |
Collapse
|
4
|
Yan BC, Park JH, Kim SK, Choi JH, Lee CH, Yoo KY, Kwon YG, Kim YM, Kim JD, Won MH. Comparison of trophic factors changes in the hippocampal CA1 region between the young and adult gerbil induced by transient cerebral ischemia. Cell Mol Neurobiol 2012; 32:1231-42. [PMID: 22552890 DOI: 10.1007/s10571-012-9848-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
In the present study, we investigated neuronal death/damage in the gerbil hippocampal CA1 region (CA1) and compared changes in some trophic factors, such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF), in the CA1 between the adult and young gerbils after 5 min of transient cerebral ischemia. Most of pyramidal neurons (89%) were damaged 4 days after ischemia-reperfusion (I-R) in the adult; however, in the young, about 59% of pyramidal neurons were damaged 7 days after I-R. The immunoreactivity and levels of BDNF and VEGF, not GDNF, in the CA1 of the normal young were lower than those in the normal adult. Four days after I-R in the adult group, the immunoreactivity and levels of BDNF and VEGF were distinctively decreased, and the immunoreactivity and level of GDNF were increased. However, in the young group, all of their immunoreactivities and levels were much higher than those in the normal young group. From 7 days after I-R, all the immunoreactivities and levels were apparently decreased compared to those of the normal adult and young. In brief, we confirmed our recent finding: more delayed and less neuronal death occurred in the young following I-R, and we newly found that the immunoreactivities of trophic factors, such as BDNF, GDNF, and VEGF, in the stratum pyramidale of the CA1 in the young gerbil were much higher than those in the adult gerbil 4 days after transient cerebral ischemia.
Collapse
Affiliation(s)
- Bing Chun Yan
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Yan BC, Park JH, Ahn JH, Choi JH, Yoo KY, Lee CH, Cho JH, Kim SK, Lee YL, Shin HC, Won MH. Comparison of glial activation in the hippocampal CA1 region between the young and adult gerbils after transient cerebral ischemia. Cell Mol Neurobiol 2012; 32:1127-38. [PMID: 22555669 DOI: 10.1007/s10571-012-9837-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/21/2012] [Indexed: 01/01/2023]
Abstract
It has been reported that young animals are less vulnerable to brain ischemia. In the present study, we compared gliosis in the hippocampal CA1 region of the young gerbil with those in the adult gerbil induced by 5 min of transient cerebral ischemia by immunohistochemistry and western blot for glial cells. We used male gerbils of postnatal month 1 (PM 1) as the young and PM 6 as the adult. Neuronal death in CA1 pyramidal neurons in the adult gerbil occurred at 4 days post-ischemia; the neuronal death in the young gerbil occurred at 7 days post-ischemia. The findings of glial changes in the young gerbil after ischemic damage were distinctively different from those in the adult gerbil. Glial fibrillary acidic protein-immunoreactive astrocytes, ionized calcium-binding adapter molecule (Iba-1), and isolectin B4-immunoreactive microglia in the ischemic CA1 region were activated much later in the young gerbil than in the adult gerbil. In brief, very less gliosis occurred in the hippocampal CA1 region of the young gerbil than in the adult gerbil after transient cerebral ischemia.
Collapse
Affiliation(s)
- Bing Chun Yan
- Department of Neurobiology, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Giusi G, Zizza M, Facciolo RM, Chew SF, Ip YK, Canonaco M. Aestivation and hypoxia-related events share common silent neuron trafficking processes. BMC Neurosci 2012; 13:39. [PMID: 22520032 PMCID: PMC3407487 DOI: 10.1186/1471-2202-13-39] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/20/2012] [Indexed: 11/10/2022] Open
Abstract
Background The availability of oxygen is a limiting factor for neuronal survival since low levels account not only for the impairment of physiological activities such as sleep-wake cycle, but above all for ischemic-like neurodegenerative disorders. In an attempt to improve our knowledge concerning the type of molecular mechanisms operating during stressful states like those of hypoxic conditions, attention was focused on eventual transcriptional alterations of some key AMPAergic silent neuronal receptor subtypes (GluR1 and GluR2) along with HSPs and HIF-1α during either a normoxic or a hypoxic aestivation of a typical aquatic aestivator, i.e. the lungfish (Protopterus annectens). Results The identification of partial nucleotide fragments codifying for both AMPA receptor subtypes in Protopterus annectens displayed a putative high degree of similarity to that of not only fish but also to those of amphibians, birds and mammals. qPCR and in situ hybridization supplied a very high (p < 0.001) reduction of GluR1 mRNA expression in diencephalic areas after 6 months of aerial normoxic aestivation (6mAE). Concomitantly, high (p < 0.01) levels of HSP70 mRNAs in hypothalamic, mesencephalic and cerebellar areas of both 6mAE and after 6 months of mud hypoxic aestivation (6mMUD) were detected together with evident apoptotic signals. Surprisingly, very high levels of GluR2 mRNAs were instead detected in thalamic along with mesencephalic areas after 6 days of normoxic (6dAE) and hypoxic (6dMUD) aestivation. Moreover, even short- and long-term hypoxic states featured high levels of HIF-1α and HSP27 transcripts in the different brain regions of the lungfish. Conclusions The distinct transcriptional variations of silent neurons expressing GluR1/2 and HSPs tend to corroborate these factors as determining elements for the physiological success of normoxic and hypoxic aestivation. A distinct switching among these AMPA receptor subtypes during aestivation highlights new potential adaptive strategies operating in key brain regions of the lungfish in relation to oxygen availability. This functional relationship might have therapeutic bearings for hypoxia-related dysfunctions, above all in view of recently identified silent neuron-dependent motor activity ameliorations in mammals.
Collapse
Affiliation(s)
- Giuseppina Giusi
- Comparative Neuroanatomy Laboratory, University of Calabria, 87030 Arcavacata di Rende-CS, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Comparison of the Immunoreactivity of Trx2/Prx3 Redox System in the Hippocampal CA1 Region Between the Young and Adult Gerbil Induced by Transient Cerebral Ischemia. Neurochem Res 2012; 37:1019-30. [DOI: 10.1007/s11064-012-0702-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/28/2011] [Accepted: 01/02/2012] [Indexed: 10/14/2022]
|
8
|
Increases of antioxidants are related to more delayed neuronal death in the hippocampal CA1 region of the young gerbil induced by transient cerebral ischemia. Brain Res 2011; 1425:142-54. [PMID: 22032878 DOI: 10.1016/j.brainres.2011.09.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/28/2011] [Accepted: 09/29/2011] [Indexed: 11/20/2022]
Abstract
In age-related studies, young animals are resistant to ischemic damage. In present study, we investigated the neuronal death of pyramidal neurons and compared changes in the immunoreactivities and levels of antioxidants, Cu/Zn-SOD (SOD1), Mn-SOD (SOD2), catalase (CAT) and glutathione peroxidase (Gpx), in the hippocampal CA1 region between adult and young gerbils after 5 min of transient cerebral ischemia. In the adult ischemia-group, only a few (12%) of CA1 pyramidal neurons survived 4 days after ischemia-reperfusion (I-R); however, in the 4 days after I-R the young group, most of CA1 pyramidal neurons survived. Seven days after I-R, many (about 39%) of CA1 pyramidal neurons survived, thereafter, the neuronal death in the CA1 pyramidal neurons was not significantly changed. The immunoreactivities of all the antioxidants were well detected in CA1 pyramidal neurons in the adult sham-groups; in the young sham-groups, they were distinctively low compared to those in the adult sham-group. Four days after I-R in the adult group, all the immunoreactivities in the pyramidal neurons were dramatically deceased. However, at this time after I-R in the young groups, they were dramatically increased in the pyramidal neurons. From 7 days after I-R, all the immunoreactivities in the pyramidal neurons in the young ischemia-groups were distinctively decreased. In addition, the levels of all the antioxidants in the CA1 region of the young sham-groups were lower than those in the adult sham-group. Four days after I-R in the adult groups, the levels of all the antioxidants were dramatically deceased; however, at this time in the young ischemia-groups, they were distinctively increased in the CA1 region. Seven days after I-R, all the antioxidants levels in the CA1 region were distinctively decreased. In brief, we conclude that the increased antioxidants levels were related to a less and much delayed neuronal death in the CA1 pyramidal neurons in the young group following I-R injury.
Collapse
|
9
|
Kaur J, Zhao Z, Geransar RM, Papadakis M, Buchan AM. Prior deafferentation confers long term protection to CA1 against transient forebrain ischemia and sustains GluR2 expression. Brain Res 2006; 1075:201-12. [PMID: 16480690 DOI: 10.1016/j.brainres.2005.12.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2005] [Revised: 12/12/2005] [Accepted: 12/15/2005] [Indexed: 11/19/2022]
Abstract
Hippocampal CA1 pyramidal neurons undergo delayed neurodegeneration after transient forebrain ischemia, and the phenomenon is dependent upon hyperactivation of l-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) subtype of glutamate receptors, resulting in aberrant intracellular calcium influx. The GluR2 subunit of AMPA receptors is critical in limiting the influx of calcium. The CA1 pyramidal neurons are very sensitive to ischemic damage and attempts to achieve neuroprotection, mediated by drugs, have been unsuccessful. Moreover, receptor antagonism strategies in the past have failed to provide long-term protection against ischemic injury. Long-term protection against severe forebrain ischemia can be conferred by fimbria-fornix (FF) deafferentation, which interrupts the afferent input to CA1. Our study evaluated the long-term protective effect of FF deafferentation, 12 days prior to induction of ischemia, on vulnerable CA1 neurons. Our results indicate that at 7 and 28 days post-ischemia, prior FF deafferentation protected 60% of neurons against ischemic cell death. Furthermore, we sought to evaluate whether FF deafferentation also sustained GluR2 levels in these neurons. GluR2 protein and mRNA expression were sustained by deafferentation at 70% of control following ischemia. Correlation studies revealed a positive correlation between GluR2 protein and mRNA level. These results demonstrate that protection conferred by FF deafferentation was long-term and related to sustained GluR2 expression.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Hotchkiss Brain Institute and Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, 157-3330 Hospital Drive NW, Calgary, AB, Canada T2N 2T8
| | | | | | | | | |
Collapse
|
10
|
Abstract
A variety of analytical methodologies to investigate gene expression patterns in cells or tissues have been developed. For screening purposes, a large number of target mRNAs have to be interrogated simultaneously. These requirements have been met more or less comprehensively by Differential Display (DD) RT-PCR, Suppression Subtractive Hybridization (SSH), Serial Analysis of Gene Expression (SAGE), and DNA chips. The ultimate goal to cover any gene transcript potentially expressed by a given cell is on the way to be achieved by microbead arrays and by Affymetrix gene chips. Once targets of interest are identified, techniques employing low degrees of multiplexing, such as RNAse protection assays or some bead-based techniques (Luminex) eventually provide extremely fast results on the diagnostic level. With the aid of powerful computer programs, expression profiling technologies have opened intriguing new insights into the complex world of gene regulation. These new techniques have also been applied in drug abuse research recently and some examples of such approaches are described.
Collapse
Affiliation(s)
- Peter Gebicke-Haerter
- Department of Psychopharmacology, Central Institute for Mental Health, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|