1
|
Dolfini E, Cardellicchio P, Fadiga L, D'Ausilio A. The role of dorsal premotor cortex in joint action inhibition. Sci Rep 2024; 14:4675. [PMID: 38409309 PMCID: PMC10897189 DOI: 10.1038/s41598-024-54448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Behavioral interpersonal coordination requires smooth negotiation of actions in time and space (joint action-JA). Inhibitory control may play a role in fine-tuning appropriate coordinative responses. To date, little research has been conducted on motor inhibition during JA and on the modulatory influence that premotor areas might exert on inhibitory control. Here, we used an interactive task in which subjects were required to reach and open a bottle using one hand. The bottle was held and stabilized by a co-actor (JA) or by a mechanical holder (vice clamp, no-JA). We recorded two TMS-based indices of inhibition (short-interval intracortical inhibition-sICI; cortical silent period-cSP) during the reaching phase of the task. These reflect fast intracortical (GABAa-mediated) and slow corticospinal (GABAb-mediated) inhibition. Offline continuous theta burst stimulation (cTBS) was used to interfere with dorsal premotor cortex (PMd), ventral premotor cortex (PMv), and control site (vertex) before the execution of the task. Our results confirm a dissociation between fast and slow inhibition during JA coordination and provide evidence that premotor areas drive only slow inhibitory mechanisms, which in turn may reflect behavioral co-adaptation between trials. Exploratory analyses further suggest that PMd, more than PMv, is the key source of modulatory drive sculpting movements, according to the socio-interactive context.
Collapse
Affiliation(s)
- Elisa Dolfini
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy.
| | - Pasquale Cardellicchio
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Luciano Fadiga
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| |
Collapse
|
2
|
Cardellicchio P, Dolfini E, D'Ausilio A. The role of dorsal premotor cortex in joint action stopping. iScience 2021; 24:103330. [PMID: 34805791 PMCID: PMC8586805 DOI: 10.1016/j.isci.2021.103330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/08/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022] Open
Abstract
Human sensorimotor interaction requires mutual behavioral adaptation as well as shared cognitive task representations (Joint Action, JA). Yet, an under-investigated aspect of JA is the neurobehavioral mechanisms employed to stop actions if the context calls for it. Sparse evidence points to the possible contribution of the left dorsal premotor cortex (lPMd) in sculpting movements according to the socio-interactive context. To clarify this issue, we ran two experiments integrating a classical stop signal paradigm with an ecological JA task. The first behavioral study shows longer Stop performance in the JA condition. In the second, we use transcranial magnetic stimulation to inhibit the lPMd or a control site (vertex). Results show that lPMd modulates the JA stopping performance. Action stopping is an important component of JA coordination, and here we provide evidence that lPMd is a key node of a brain network recruited for online mutual co-adaptation in social contexts. Interaction requires mutual adaptation and a shared cognitive task representation Sensorimotor representations must be negotiated between partners to achieve the goal Motor suppression mechanisms might be essential in Joint Action coordination Dorsal premotor cortex (PMd) plays a key role in guiding Joint Action coordination
Collapse
Affiliation(s)
- Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Elisa Dolfini
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.,Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Hao L, Sheng Z, Ruijun W, Kun HZ, Peng Z, Yu H. Altered Granger causality connectivity within motor-related regions of patients with Parkinson's disease: a resting-state fMRI study. Neuroradiology 2019; 62:63-69. [PMID: 31773188 DOI: 10.1007/s00234-019-02311-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Although numerous clinical neuroimaging studies have demonstrated that there are functional abnormalities of motor-related regions in patients with Parkinson's disease (PD) by resting-state functional magnetic resonance imaging (fMRI), little studies have explored the causal interactions within these motor-related regions. The present study aimed to examine Granger causality connectivity patterns within motor-related regions in PD patients. METHODS Resting-state fMRI was conducted to investigate the causal connectivity differences within motor-related regions between 17 PD patients and 17 matched healthy controls. Subsequently, the relationship between the Unified Parkinson's Disease Rating Scale scores and causal connectivity values within motor-related regions was examined in PD patients. RESULTS An increased causal connectivity from the left premotor cortex (PMC) to right primary motor cortex (M1) was found in PD patients compared with that of healthy controls. Also, increased causal flow from the PMC to M1 was negatively correlated with motor scores. CONCLUSION PD patients have abnormal causal connectivity in specific motor-related regions, which may reflect a compensatory role of motor deficits in PD patients.
Collapse
Affiliation(s)
- Li Hao
- Department of Imaging Center, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Zhao Sheng
- Department of Imaging Center, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Wang Ruijun
- Department of Imaging Center, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - He Zhi Kun
- CT Room, People's Hospital of Wu La Te Qian Qi, Bayan Nuo'er, 014400, Inner Mongolia, China
| | - Zhang Peng
- Department of Imaging Center, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Hong Yu
- Department of Imaging Center, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
4
|
Strauss S, Lotze M, Flöel A, Domin M, Grothe M. Changes in Interhemispheric Motor Connectivity Across the Lifespan: A Combined TMS and DTI Study. Front Aging Neurosci 2019; 11:12. [PMID: 30804775 PMCID: PMC6371065 DOI: 10.3389/fnagi.2019.00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
Age-related decline in interhemispheric connectivity between motor areas has been reported with both transcranial magnetic stimulation (TMS) and diffusion tensor imaging (DTI) measurements. However, not all studies were able to confirm these findings, and previous studies did not apply structural (DTI) and functional (TMS) measurements within each individual appropriately. Here, we investigated age dependency of the ipsilateral silent period (ISP) and integrity of fibers in the corpus callosum as operationalized by fractional anisotrophy (FA), using TMS and DTI, respectively, in 20 participants between 19 and 72 years of age. We found age-dependent increase for ISP, and decrease of FA, both indicating a decrease in interhemispheric inhibition, with a negative association between FA and ISP for the dominant hemisphere (r = -0.39, p = 0.043). Our findings suggest that aging leads to decline of interhemispheric motor connectivity, as evidenced in both structural and functional parameters, which should be taken into account when interpreting disease- or medication-related changes.
Collapse
Affiliation(s)
- Sebastian Strauss
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| | - Martin Lotze
- Functional Imaging, Institute for Diagnostic Radiology and Neuroradiology, University Medicine of Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| | - Martin Domin
- Functional Imaging, Institute for Diagnostic Radiology and Neuroradiology, University Medicine of Greifswald, Greifswald, Germany
| | - Matthias Grothe
- Department of Neurology, University Medicine of Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Huang YZ, Chen RS, Fong PY, Rothwell JC, Chuang WL, Weng YH, Lin WY, Lu CS. Inter-cortical modulation from premotor to motor plasticity. J Physiol 2018; 596:4207-4217. [PMID: 29888792 DOI: 10.1113/jp276276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/30/2018] [Indexed: 01/10/2023] Open
Abstract
KEY POINTS Synaptic plasticity is involved in daily activities but abnormal plasticity may be deleterious. In this study, we found that motor plasticity could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Such changes in motor plasticity were associated with reduced learning of a simple motor task. We postulate that the premotor cortex adjusts the amount of motor plasticity to modulate motor learning through heterosynaptic metaplasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network, a concept that could be employed to intervene in diseases with abnormal plasticity. ABSTRACT Primary motor cortex (M1) plasticity is known to be influenced by the excitability and prior activation history of M1 itself. However, little is known about how its plasticity is influenced by other areas of the brain. In the present study on humans of either sex who were known to respond to theta burst stimulation from previous studies, we found plasticity of M1 could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Motor plasticity was distorted and disappeared 30 min and 120 min, respectively, after premotor excitability was suppressed. Further evaluation revealed that such changes in motor plasticity were associated with impaired learning of a simple motor task. We postulate that the premotor cortex modulates the amount of plasticity within M1 through heterosynaptic metaplasticity, and that this may impact on learning of a simple motor task previously shown to be directly affected by M1 plasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. Furthermore, such concepts could be translated into therapeutic approaches for diseases with aberrant plasticity.
Collapse
Affiliation(s)
- Ying-Zu Huang
- Neuroscience Research Center, Healthy Ageing Research Center, and Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, 33305, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, 32001, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Healthy Ageing Research Center, and Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, 33305, Taiwan
| | - Po-Yu Fong
- Neuroscience Research Center, Healthy Ageing Research Center, and Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, 33305, Taiwan
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Wen-Li Chuang
- Department of Neurology, Cheng Ching Hospital, Taichung, 40764, Taiwan
| | - Yi-Hsin Weng
- Neuroscience Research Center, Healthy Ageing Research Center, and Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, 33305, Taiwan
| | - Wey-Yil Lin
- Department of Neurology, Landseed Hospital, Taoyuan, 32449, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Healthy Ageing Research Center, and Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, 33305, Taiwan
| |
Collapse
|
6
|
Maudrich T, Kenville R, Lepsien J, Villringer A, Ragert P. Structural Neural Correlates of Physiological Mirror Activity During Isometric Contractions of Non-Dominant Hand Muscles. Sci Rep 2018; 8:9178. [PMID: 29907835 PMCID: PMC6003937 DOI: 10.1038/s41598-018-27471-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/04/2018] [Indexed: 11/09/2022] Open
Abstract
Mirror Activity (MA) describes involuntarily occurring muscular activity in contralateral homologous limbs during unilateral movements. This phenomenon has not only been reported in patients with neurological disorders (i.e. Mirror Movements) but has also been observed in healthy adults referred to as physiological Mirror Activity (pMA). However, despite recent hypotheses, the underlying neural mechanisms and structural correlates of pMA still remain insufficiently described. We investigated the structural correlates of pMA during isometric contractions of hand muscles with increasing force demands on a whole-brain level by means of voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS). We found significant negative correlations between individual tendencies to display pMA and grey matter volume (GMV) in the right anterior cingulate cortex (ACC) as well as fractional anisotropy (FA) of white matter (WM) tracts of left precuneus (PrC) during left (non-dominant) hand contractions. No significant structural associations for contractions of the right hand were found. Here we extend previously reported functional associations between ACC/PrC and the inhibtion of intrinsically favoured mirror-symmetrical movement tendencies to an underlying structural level. We provide novel evidence that the individual structural state of higher order motor/executive areas upstream of primary/secondary motor areas might contribute to the phenomen of pMA.
Collapse
Affiliation(s)
- Tom Maudrich
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, 04109, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Rouven Kenville
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, 04109, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Jöran Lepsien
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany.,Clinic for Cognitive Neurology, University of Leipzig, Leipzig, 04103, Germany.,Berlin School of Mind and Brain, Mind and Brain Institute, Berlin, 10099, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, 04109, Germany. .,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany.
| |
Collapse
|
7
|
Frequency-specific modulation of connectivity in the ipsilateral sensorimotor cortex by different forms of movement initiation. Neuroimage 2017; 159:248-260. [DOI: 10.1016/j.neuroimage.2017.07.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/09/2017] [Accepted: 07/25/2017] [Indexed: 01/17/2023] Open
|
8
|
Beaulé V, Tremblay S, Lafleur LP, Ferland MC, Lepage JF, Théoret H. Modulation of physiological mirror activity with transcranial direct current stimulation over dorsal premotor cortex. Eur J Neurosci 2016; 44:2730-2734. [DOI: 10.1111/ejn.13385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Vincent Beaulé
- Départment of Psychologie; Université de Montréal, CP 6128, Succ. Centre-Ville; Montréal QC, H3C 3J7 Canada
| | - Sara Tremblay
- Départment of Psychologie; Université de Montréal, CP 6128, Succ. Centre-Ville; Montréal QC, H3C 3J7 Canada
| | - Louis-Philippe Lafleur
- Départment of Psychologie; Université de Montréal, CP 6128, Succ. Centre-Ville; Montréal QC, H3C 3J7 Canada
| | - Marie C. Ferland
- Départment of Psychologie; Université de Montréal, CP 6128, Succ. Centre-Ville; Montréal QC, H3C 3J7 Canada
| | - Jean-François Lepage
- Centre de Recherche du CHU Sherbrooke; Sherbrooke QC Canada
- Université du Québec à Trois-Rivières; Trois-Rivières QC Canada
| | - Hugo Théoret
- Départment of Psychologie; Université de Montréal, CP 6128, Succ. Centre-Ville; Montréal QC, H3C 3J7 Canada
| |
Collapse
|
9
|
Chatterjee P, Banerjee R, Choudhury S, Mondal B, Kulsum MU, Chatterjee K, Kumar H. Mirror movements in Parkinson's disease: An under-appreciated clinical sign. J Neurol Sci 2016; 366:171-176. [DOI: 10.1016/j.jns.2016.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/15/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
10
|
Cabib C, Llufriu S, Martinez-Heras E, Saiz A, Valls-Solé J. Enhanced mirror activity in ‘crossed’ reaction time tasks in multiple sclerosis. Clin Neurophysiol 2016; 127:2001-9. [DOI: 10.1016/j.clinph.2016.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
11
|
Kagerer F. Nondominant-to-dominant hand interference in bimanual movements is facilitated by gradual visuomotor perturbation. Neuroscience 2016; 318:94-103. [DOI: 10.1016/j.neuroscience.2016.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/09/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022]
|
12
|
Brown MJ, Staines WR. Differential effects of continuous theta burst stimulation over left premotor cortex and right prefrontal cortex on modulating upper limb somatosensory input. Neuroimage 2016; 127:97-109. [DOI: 10.1016/j.neuroimage.2015.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022] Open
|
13
|
Irmady K, Jabbari B, Louis ED. Arm Posturing in a Patient Following Stroke: Dystonia, Levitation, Synkinesis, or Spasticity? TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2015; 5:353. [PMID: 26682091 PMCID: PMC4681881 DOI: 10.7916/d8222tbh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/03/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND Post-stroke movement disorders occur in up to 4% of stroke patients. The movements can be complex and difficult to classify, which presents challenges when attempting to understand the clinical phenomenology and provide appropriate treatment. CASE REPORT We present a 64-year-old male with an unusual movement in the arm contralateral to his ischemic stroke. The primary feature of the movement was an involuntary elevation of the arm, occurring only when he was walking. DISCUSSION The differential diagnosis includes dystonia, spontaneous arm levitation, synkinesis, and spasticity. We discuss each of these diagnostic possibilities in detail.
Collapse
Affiliation(s)
- Krithi Irmady
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Bahman Jabbari
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA ; Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA ; Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
14
|
Diffusion imaging and transcranial magnetic stimulation assessment of transcallosal pathways in chronic stroke. Clin Neurophysiol 2015; 126:1959-71. [DOI: 10.1016/j.clinph.2014.12.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 12/10/2014] [Accepted: 12/27/2014] [Indexed: 11/23/2022]
|
15
|
Welniarz Q, Dusart I, Gallea C, Roze E. One hand clapping: lateralization of motor control. Front Neuroanat 2015; 9:75. [PMID: 26082690 PMCID: PMC4451425 DOI: 10.3389/fnana.2015.00075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
Lateralization of motor control refers to the ability to produce pure unilateral or asymmetric movements. It is required for a variety of coordinated activities, including skilled bimanual tasks and locomotion. Here we discuss the neuroanatomical substrates and pathophysiological underpinnings of lateralized motor outputs. Significant breakthroughs have been made in the past few years by studying the two known conditions characterized by the inability to properly produce unilateral or asymmetric movements, namely human patients with congenital “mirror movements” and model rodents with a “hopping gait”. Whereas mirror movements are associated with altered interhemispheric connectivity and abnormal corticospinal projections, abnormal spinal cord interneurons trajectory is responsible for the “hopping gait”. Proper commissural axon guidance is a critical requirement for these mechanisms. Interestingly, the analysis of these two conditions reveals that the production of asymmetric movements involves similar anatomical and functional requirements but in two different structures: (i) lateralized activation of the brain or spinal cord through contralateral silencing by cross-midline inhibition; and (ii) unilateral transmission of this activation, resulting in lateralized motor output.
Collapse
Affiliation(s)
- Quentin Welniarz
- Neuroscience Paris Seine, CNRS UMR8246, Inserm U1130, Sorbonne Universités, UPMC UM119 Paris, France ; Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM Paris, France
| | - Isabelle Dusart
- Neuroscience Paris Seine, CNRS UMR8246, Inserm U1130, Sorbonne Universités, UPMC UM119 Paris, France
| | - Cécile Gallea
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM Paris, France
| | - Emmanuel Roze
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM Paris, France ; Département des Maladies du Système Nerveux, AP-HP, Hôpital Pitié Salpêtrière Paris, France
| |
Collapse
|
16
|
Wu T, Hou Y, Hallett M, Zhang J, Chan P. Lateralization of brain activity pattern during unilateral movement in Parkinson's disease. Hum Brain Mapp 2015; 36:1878-91. [PMID: 25644527 DOI: 10.1002/hbm.22743] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 02/01/2023] Open
Abstract
We investigated the lateralization of brain activity pattern during performance of unilateral movement in drug-naïve Parkinson's disease (PD) patients with only right hemiparkinsonian symptoms. Functional MRI was obtained when the subjects performed strictly unilateral right hand movement. A laterality index was calculated to examine the lateralization. Patients had decreased activity in the left putamen and left supplementary motor area, but had increased activity in the right primary motor cortex, right premotor cortex, left postcentral gyrus, and bilateral cerebellum. The laterality index was significantly decreased in PD patients compared with controls (0.41 ± 0.14 vs. 0.84 ± 0.09). The connectivity from the left putamen to cortical motor regions and cerebellum was decreased, while the interactions between the cortical motor regions, cerebellum, and right putamen were increased. Our study demonstrates that in early PD, the lateralization of brain activity during unilateral movement is significantly reduced. The dysfunction of the striatum-cortical circuit, decreased transcallosal inhibition, and compensatory efforts from cortical motor regions, cerebellum, and the less affected striatum are likely reasons contributing to the reduced motor lateralization. The disruption of the lateralized brain activity pattern might be a reason underlying some motor deficits in PD, like mirror movements or impaired bilateral motor coordination.
Collapse
Affiliation(s)
- Tao Wu
- Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | | | | | | | | |
Collapse
|
17
|
Zult T, Howatson G, Kádár EE, Farthing JP, Hortobágyi T. Role of the mirror-neuron system in cross-education. Sports Med 2014; 44:159-78. [PMID: 24122078 DOI: 10.1007/s40279-013-0105-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present review proposes the untested hypothesis that cross-education performed with a mirror increases the transfer of motor function to the resting limb compared with standard cross-education interventions without a mirror. The hypothesis is based on neuroanatomical evidence suggesting an overlap in activated brain areas when a unilateral motor task is performed with and without a mirror in the context of cross-education of the upper extremities. The review shows that the mirror-neuron system (MNS), connecting sensory neurons responding to visual properties of an observed action and motor neurons that discharge action potentials during the execution of a similar action, has the potential to enhance cross-education.
Collapse
|
18
|
Sattler V, Dickler M, Michaud M, Meunier S, Simonetta-Moreau M. Does abnormal interhemispheric inhibition play a role in mirror dystonia? Mov Disord 2013; 29:787-96. [PMID: 24352854 DOI: 10.1002/mds.25768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 11/07/2022] Open
Abstract
The presence of mirror dystonia (dystonic movement induced by a specific task performed by the unaffected hand) in the dominant hand of writer's cramp patients when the nondominant hand is moved suggests an abnormal interaction between the 2 hemispheres. In this study we compare the level of interhemispheric inhibition (IHI) in 2 groups of patients with writer's cramp, one with the presence of a mirror dystonia and the other without as well as a control group. The level of bidirectional IHI was measured in wrist muscles with dual-site transcranial magnetic stimulation with a 10-millisecond (short IHI) and a 40-millisecond (long IHI) interstimulus interval during rest and while holding a pen in 9 patients with mirror dystonia 7 without mirror dystonia, and 13 controls. The group of patients without mirror dystonia did not differ from the controls in their IHI level. In contrast, IHI was significantly decreased in the group of patients with mirror dystonia in comparison with the group without mirror dystonia and the controls in both wrist muscles of both the dystonic and unaffected hand whatever the resting or active condition (P = 0.001). The decrease of IHI level in the group of patients with mirror dystonia was negatively correlated with the severity and the duration of the disease: the weaker the level of IHI, the more severe was the disease and the longer its duration. Interhemispheric inhibition disturbances are most likely involved in the occurrence of mirror dystonia. This bilateral deficient inhibition further suggests the involvement of the unaffected hemisphere in the pathophysiology of unilateral dystonia.
Collapse
Affiliation(s)
- Virginie Sattler
- Centre Hospitalier Universitaire de Toulouse, Pôle Neurosciences, CHU Purpan, Place du Dr Baylac, F-31059 Toulouse Cedex 9, France; Inserm; Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Pavillon Baudot, Toulouse, France
| | | | | | | | | |
Collapse
|
19
|
Spagnolo F, Coppi E, Chieffo R, Straffi L, Fichera M, Nuara A, Gonzalez-Rosa J, Martinelli V, Comi G, Volontè MA, Leocani L. Interhemispheric Balance in Parkinson's Disease: A Transcranial Magnetic Stimulation Study. Brain Stimul 2013; 6:892-7. [DOI: 10.1016/j.brs.2013.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 04/29/2013] [Accepted: 05/11/2013] [Indexed: 11/26/2022] Open
|
20
|
Giovannelli F, Innocenti I, Rossi S, Borgheresi A, Ragazzoni A, Zaccara G, Viggiano MP, Cincotta M. Role of the dorsal premotor cortex in rhythmic auditory-motor entrainment: a perturbational approach by rTMS. Cereb Cortex 2012; 24:1009-16. [PMID: 23236203 DOI: 10.1093/cercor/bhs386] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synchronization of body movements to an external beat is a universal human ability, which has also been recently documented in nonhuman species. The neural substrates of this rhythmic motor entrainment are still under investigation. Correlational neuroimaging data suggest an involvement of the dorsal premotor cortex (dPMC) and the supplementary motor area (SMA). In 14 healthy volunteers, we more specifically investigated the neural network underlying this phenomenon using a causal approach by an established 1-Hz repetitive transcranial magnetic stimulation (rTMS) protocol, which produces a focal suppression of cortical excitability outlasting the stimulation period. Synchronization accuracy between rhythmic cues and right index finger tapping, as measured by the mean time lag (asynchrony) between motor and auditory events, was significantly affected when the right dPMC function was transiently perturbed by "off-line" focal rTMS, whereas the reproduction of the rhythmic sequence per se (inter-tap-interval) was spared. This approach affected metrical rhythms of different complexity, but not non-metrical or isochronous sequences. Conversely, no change in auditory-motor synchronization was observed with rTMS of the SMA, of the left dPMC or over a control site (midline occipital area). Our data strongly support the view that the right dPMC is crucial for rhythmic auditory-motor synchronization in humans.
Collapse
Affiliation(s)
- Fabio Giovannelli
- Unità Operativa di Neurologia, Azienda Sanitaria di Firenze, Ospedale San Giovanni di Dio,Firenze, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Interhemispheric control of unilateral movement. Neural Plast 2012; 2012:627816. [PMID: 23304559 PMCID: PMC3523159 DOI: 10.1155/2012/627816] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/04/2012] [Indexed: 11/25/2022] Open
Abstract
To perform strictly unilateral movements, the brain relies on a large cortical and subcortical network. This network enables healthy adults to perform complex unimanual motor tasks without the activation of contralateral muscles. However, mirror movements (involuntary movements in ipsilateral muscles that can accompany intended movement) can be seen in healthy individuals if a task is complex or fatiguing, in childhood, and with increasing age. Lateralization of movement depends on complex interhemispheric communication between cortical (i.e., dorsal premotor cortex, supplementary motor area) and subcortical (i.e., basal ganglia) areas, probably coursing through the corpus callosum (CC). Here, we will focus on transcallosal interhemispheric inhibition (IHI), which facilitates complex unilateral movements and appears to play an important role in handedness, pathological conditions such as Parkinson's disease, and stroke recovery.
Collapse
|
22
|
van Wijk BCM, Beek PJ, Daffertshofer A. Differential modulations of ipsilateral and contralateral beta (de)synchronization during unimanual force production. Eur J Neurosci 2012; 36:2088-97. [PMID: 22583034 DOI: 10.1111/j.1460-9568.2012.08122.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unilateral movement is usually accompanied by ipsilateral activity in the primary motor cortex (M1). It is still largely unclear whether this activity reflects interhemispheric 'cross-talk' of contralateral M1 that facilitates movement, or results from processes that inhibit motor output. We investigated the role of beta power in ipsilateral M1 during unimanual force production. Significant ipsilateral beta desynchronization occurred during continuous dynamic but not during static force production. Moreover, event-related time-frequency analysis revealed bilateral desynchronization patterns, whereas post-movement synchronization was confined to the contralateral hemisphere. Our findings indicate that ipsilateral activation is not merely the result of interhemispheric cross-talk but involves additional processes. Given observations of differential blood oxygen level-dependent responses in ipsilateral and contralateral M1, and the correlation between beta desynchronization and the firing rate of pyramidal tract neurons in contralateral M1 during movement, we speculate that beta desynchronization in contra- and ipsilateral M1 arises from distinct neural activation patterns.
Collapse
Affiliation(s)
- B C M van Wijk
- Research Institute MOVE, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
23
|
Cox BC, Cincotta M, Espay AJ. Mirror movements in movement disorders: a review. Tremor Other Hyperkinet Mov (N Y) 2012; 2:tre-02-59-398-1. [PMID: 23440079 PMCID: PMC3569961 DOI: 10.7916/d8vq31dz] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/30/2011] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Mirror movements (MM) are involuntary movements of homologous muscles during voluntary movements of contralateral body regions. While subtle mirroring can be present in otherwise healthy adults, overt MM may be common in many movement disorders. Examining these collective findings may further our understanding of MM and help define their usefulness as a clinical sign. METHODS We sought to review English language research articles examining the presence, clinical significance, and/or pathophysiology of MM in Parkinson's disease (PD), corticobasal syndrome (CBS), essential tremor (ET), focal hand dystonia, Creutzfeldt-Jakob's disease (CJD), and Huntington's disease. When available, MM in these disorders were compared with those of healthy age-matched controls and congenital disorders such as Klippel-Feil syndrome and X-linked Kallman's syndrome. RESULTS Clinical presentation of MM is common in asymmetric parkinsonian disorders (early PD, CBS) and manifests differently depending on the side affected (less affected hand in PD, more affected hand in CBS, either hand in ET, and both hands in healthy adults and congenital disorders), stage of disease (early, asymmetric PD and CJD), and presence of concomitant mirror-like overflow phenomena (focal dystonia and CBS-associated alien hand). In general, uncrossed descending corticospinal projections (congenital MM) and/or abnormal activation of the motor cortex ipsilateral to the voluntary task (most acquired MM), i.e., activation of the normal crossed corticospinal pathway, are required for the generation of MM. DISCUSSION MM are common motor phenomena and present differently in several acquired (mostly neurodegenerative) and congenital movement disorders. Future studies on MM will enhance the clinical diagnosis of selected movement disorders and contribute to our understanding of the normal physiology of bimanual coordination.
Collapse
Affiliation(s)
- Benjamin C. Cox
- University of Cincinnati Neuroscience Institute, Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | - Alberto J. Espay
- University of Cincinnati Neuroscience Institute, Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
24
|
Addamo PK, Farrow M, Bradshaw JL, Georgiou-Karistianis N. Relative or absolute? Implications and consequences of the measures adopted to investigate motor overflow. J Mot Behav 2011; 43:203-12. [PMID: 21480026 DOI: 10.1080/00222895.2011.561376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Motor overflow is involuntary overt movement or covert muscle activity that cooccurs with voluntary movement. Overflow is present in several pathological conditions, as well as in neurologically healthy children and older adults, and can be induced in healthy young adults under effortful conditions. This motor phenomenon may provide insight into the underlying mechanisms and kinetic characteristics of voluntary and involuntary motor control in various populations. Although often measured behaviorally using force transduction techniques, different methods of calculating and presenting such overflow data have resulted in seemingly contradictory findings, with limited discussion of the advantages and limitations of different approaches. In this article, the authors examined the relevant literature to highlight significant methodological considerations for authors and readers conducting or appraising this type of research. Issues regarding the interpretation and reporting of findings are also discussed. Researchers are encouraged to continue using behavioral measures to create well-defined variables that enable the study of the kinematic characteristics of overflow, as these may offer promising new ways forward in better characterizing and understanding this intriguing movement phenomenon.
Collapse
Affiliation(s)
- Patricia K Addamo
- Experimental Neuropsychology Research Unit, School of Psychology and Psychiatry, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
25
|
Tuck KK, Yeow TC, Morris JG, Baker F, Fung VS. The use of Fogs' test to assess associated movements in Parkinsonism, dystonia, and controls. Mov Disord 2010; 26:121-4. [DOI: 10.1002/mds.23431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 03/08/2010] [Accepted: 08/10/2010] [Indexed: 11/10/2022] Open
|
26
|
Giovannelli F, Borgheresi A, Balestrieri F, Zaccara G, Viggiano MP, Cincotta M, Ziemann U. Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study. J Physiol 2009; 587:5393-410. [PMID: 19770195 PMCID: PMC2793872 DOI: 10.1113/jphysiol.2009.175885] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/15/2009] [Indexed: 12/27/2022] Open
Abstract
Brief interruption of voluntary EMG in a hand muscle by focal transcranial magnetic stimulation (TMS) of the ipsilateral primary motor cortex (M1), the so-called ipsilateral silent period (ISP), is a measure of interhemispheric motor inhibition. However, little is known about how volitional motor activity would modulate the ISP. Here we tested in 30 healthy adults to what extent and under what conditions voluntary activation of the stimulated right M1 by moving the left hand strengthens interhemispheric inhibition as indexed by an enhancement of the ISP area in the maximally contracting right first dorsal interosseous (FDI). Left index finger abduction, already at low levels of contraction, significantly enhanced the ISP compared to left hand at rest. Even imagination of left index finger movement enhanced the ISP compared to rest or mental calculation. This enhancement occurred in the absence of motor-evoked potential amplitude modulation in the left FDI, thus excluding a non-specific contribution from an increase in right M1 corticospinal excitability. Contraction of the left extensor indicis, but not contraction of more proximal left upper limb or left or right lower limb muscles also enhanced the ISP. A reaction time experiment showed that the ISP enhancement developed at a late stage of movement preparation just before or at movement onset. Interhemispheric inhibition of the motor-evoked potential as tested by a bifocal paired-pulse TMS protocol and thought to be mediated via a neuronal circuit different to the ISP was not enhanced when tested under identical motor task conditions. Finally, ISP enhancement by contraction of the left FDI correlated inversely with EMG mirror activity in the right FDI during phasic abductions of the left index finger. Our findings strongly suggest that voluntary M1 activation by real or imagined movement of the contralateral hand increases interhemispheric motor inhibition of the opposite M1. This phenomenon shows substantial topographical, temporal and neuronal circuit specificity, and has functional significance as it probably plays a pivotal role in suppressing mirror activity.
Collapse
|
27
|
Park IS, Song IU, Lee SB, Lee KS, Kim HT, Kim JS. Mirror movements and involuntary homolateral limb synkinesis in a patient with probable Creutzfeldt–Jakob disease. Clin Neurol Neurosurg 2009; 111:380-3. [DOI: 10.1016/j.clineuro.2008.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Revised: 11/04/2008] [Accepted: 11/09/2008] [Indexed: 11/16/2022]
|
28
|
Huang YZ, Rothwell JC, Lu CS, Wang J, Weng YH, Lai SC, Chuang WL, Hung J, Chen RS. The effect of continuous theta burst stimulation over premotor cortex on circuits in primary motor cortex and spinal cord. Clin Neurophysiol 2009; 120:796-801. [PMID: 19231274 DOI: 10.1016/j.clinph.2009.01.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/07/2009] [Accepted: 01/09/2009] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To understand the effect of continuous theta burst stimulation (cTBS) given to the premotor area, we studied the circuits within the primary motor cortex and spinal cord after cTBS over the dorsal premotor area (PMd). METHODS Three sets of parameters, including corticospinal excitability, short interval intracortical inhibition (SICI) and intracortical facilitation (ICF) and forearm reciprocal inhibition (RI) were tested. RESULTS Paralleling the effects of cTBS applied directly to the primary motor cortex, cTBS over the left PMd suppressed corticospinal excitability as measured by the change in the size of MEPs evoked by single pulse TMS over primary motor cortex. Premotor cTBS appeared to have a longer lasting, but no more powerful effect on corticospinal excitability than motor cTBS, however, unlike motor cTBS it had no effect on SICI or ICF. Finally, although premotor cTBS had no effect on spinal H-reflexes, it did reduce the third phase of RI between forearm extensor and flexor muscles. CONCLUSIONS Premotor cTBS is a quick and useful way of modulating excitability in cortical and possibly subcortical motor circuits. SIGNIFICANCE Premotor cTBS can be used as an alternative to regular rTMS to evaluate cortical function, motor behaviours and the response to disease therapy.
Collapse
Affiliation(s)
- Ying-Zu Huang
- Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hbers A, Orekhov Y, Ziemann U. Interhemispheric motor inhibition: its role in controlling electromyographic mirror activity. Eur J Neurosci 2008; 28:364-71. [DOI: 10.1111/j.1460-9568.2008.06335.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Cincotta M, Ziemann U. Neurophysiology of unimanual motor control and mirror movements. Clin Neurophysiol 2008; 119:744-62. [DOI: 10.1016/j.clinph.2007.11.047] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 11/17/2007] [Accepted: 11/23/2007] [Indexed: 10/22/2022]
|
31
|
Ottaviani D, Tiple D, Suppa A, Colosimo C, Fabbrini G, Cincotta M, Defazio G, Berardelli A. Mirror movements in patients with Parkinson's disease. Mov Disord 2007; 23:253-8. [DOI: 10.1002/mds.21825] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
32
|
Gorniak SL, Zatsiorsky VM, Latash ML. Emerging and disappearing synergies in a hierarchically controlled system. Exp Brain Res 2007; 183:259-70. [PMID: 17703288 PMCID: PMC2827035 DOI: 10.1007/s00221-007-1042-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 06/18/2007] [Indexed: 11/29/2022]
Abstract
The purpose of the study was to explore the ability of the central nervous system (CNS) to organize synergies at two levels of a hypothetical control hierarchy involved in two-hand, multi-finger tasks. We investigated indices (DeltaV) of finger force co-variation across trials as reflections of synergies stabilizing the total force (F (TOT)). Subjects produced constant force with one or two finger-pairs (from one hand or two hands). In trials starting with one finger-pair, subjects added another finger-pair without changing F (TOT). In trials starting with two finger-pairs, subjects removed one of the finger-pairs without changing F (TOT). Adding or removing a finger-pair resulted in a transient drop in DeltaV computed for the finger-pair that remained active throughout the trial. This drop in DeltaV was seen simultaneously with force changes. Compared to the original steady-state, addition of a finger-pair led to a significant drop in DeltaV at the newly established steady-state. This drop eliminated negative co-variation among finger forces that had stabilized F (TOT). In contrast, in trials starting with two finger-pairs, no negative co-variation between finger forces within-a-pair was seen. Removing a finger-pair led to the emergence of negative co-variation between finger forces at the new steady-state. The DeltaV index computed across two finger-pairs confirmed the existence of negative force co-variation. The emergence and disappearance of force stabilizing synergies within a finger-pair may signal limitations in the ability of the CNS in forming synergies at two different hierarchical levels.
Collapse
Affiliation(s)
- Stacey L Gorniak
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-21, University Park, PA 16802, USA.
| | | | | |
Collapse
|
33
|
Li JY, Espay AJ, Gunraj CA, Pal PK, Cunic DI, Lang AE, Chen R. Interhemispheric and ipsilateral connections in Parkinson's disease: relation to mirror movements. Mov Disord 2007; 22:813-21. [PMID: 17290459 DOI: 10.1002/mds.21386] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mirror movements (MM) occur in early, asymmetric Parkinson's disease (PD). To examine the pathophysiology of MM in PD, we studied 13 PD patients with MM (PD-MM), 7 PD patients without MM (PD-NM), and 14 normal subjects. Cross-correlogram did not detect common synaptic input to motoneuron pools innervating homologous hand muscles in PD-MM patients. Transcranial magnetic stimulation studies showed no significant difference in ipsilateral motor-evoked potentials between PD-MM patients and normal subjects. The MM side of PD-MM patients showed a slower increase in ipsilateral silent period area with higher level of muscle contraction than the non-MM side and normal subjects. There was less interhemispheric inhibition (IHI) at long interstimulus intervals of 20 to 50 ms in PD-MM than PD-NM. IHI reduced short interval intracortical inhibition in normal subjects and PD-NM, but not in PD-MM. IHI significantly increased intracortical facilitation in PD-MM and PD-NM patients, but not in normal subjects. Our results suggest that MM in PD is due to activation of the contralateral motor cortex. PD-MM patients had reduced transcallosal inhibitory effects on cortical output neurons and on intracortical inhibitory circuits compared to PD-NM patients and controls. These deficits in transcallosal inhibition may contribute to MM in PD patients.
Collapse
Affiliation(s)
- Jie-Yuan Li
- Division of Neurology, Department of Medicine, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Giovannelli F, Borgheresi A, Balestrieri F, Ragazzoni A, Zaccara G, Cincotta M, Ziemann U. Role of the right dorsal premotor cortex in "physiological" mirror EMG activity. Exp Brain Res 2006; 175:633-40. [PMID: 16794846 DOI: 10.1007/s00221-006-0581-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
A distributed cortical network enables the lateralization of intended unimanual movements, i.e., the transformation from a default mirror movement to a unimanual movement. Little is known about the exact functional organization of this "non-mirror transformation" network. Involvement of the right dorsal premotor cortex (dPMC) was suggested because its virtual lesion by high-frequency repetitive transcranial magnetic stimulation (rTMS) increased the excitability of the left primary motor cortex (M1) during unilateral isometric contraction of a left hand muscle (Cincotta et al., Neurosci Lett 367: 189-93, 2004). However, no behavioural effects were observed in that experimental protocol. Here we tested behaviourally twelve healthy volunteers to find out whether focal disruption of the right dPMC by "off-line" One Hz rTMS (900 pulses, 115% of resting motor threshold) enhances "physiological" mirroring. This was measured by an established protocol (Mayston et al., Ann Neurol 45: 583-94, 1999) that quantifies the mirror increase in the electromyographic (EMG) level in the isometrically contracting abductor pollicis brevis (APB) muscle of one hand during brief phasic contractions performed with the APB of the other hand. Mirroring in the right APB significantly increased after real rTMS of the right dPMC. In contrast, no change in mirroring was seen with sham rTMS of the right dPMC, real rTMS of the right M1, or real rTMS of the left dPMC. These findings strongly support the hypothesis that the right dPMC is part of the non-mirror transformation cortical network.
Collapse
Affiliation(s)
- F Giovannelli
- Unità Operativa di Neurologia, Azienda Sanitaria di Firenze, Ospedale S. Maria Nuova, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Rossi S, Pasqualetti P, Zito G, Vecchio F, Cappa SF, Miniussi C, Babiloni C, Rossini PM. Prefrontal and parietal cortex in human episodic memory: an interference study by repetitive transcranial magnetic stimulation. Eur J Neurosci 2006; 23:793-800. [PMID: 16487159 DOI: 10.1111/j.1460-9568.2006.04600.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neuroimaging findings, including repetitive transcranial magnetic stimulation (rTMS) interference, point to an engagement of prefrontal cortex (PFC) in learning and memory. Whether parietal cortex (PC) activity is causally linked to successful episodic encoding and retrieval is still uncertain. We compared the effects of event-related active or sham rTMS (a rapid-rate train coincident to the very first phases of memoranda presentation) to the left or right intraparietal sulcus, during a standardized episodic memory task of visual scenes, with those obtained in a fully matched sample of subjects who received rTMS on left or right dorsolateral PFC during the same task. In these subjects, specific hemispheric effects of rTMS included interference with encoding after left stimulation and disruption of retrieval after right stimulation. The interference of PC-rTMS on encoding/retrieval performance was negligible, lacking specificity even when higher intensities of stimulation were applied. However, right PC-rTMS of the same intensity lengthened reaction times in the context of a purely attentive visuospatial task. These results suggest that the activity of intraparietal sulci shown in several functional magnetic resonance studies on memory, unlike that of the dorsolateral PFC, is not causally engaged to a useful degree in memory encoding and retrieval of visual scenes. The parietal activations accompanying the memorization processes could reflect the engagement of a widespread brain attentional network, in which interference on a single 'node' is insufficient for an overt disruption of memory performance.
Collapse
Affiliation(s)
- Simone Rossi
- Dipartimento di Neuroscienze, Sezione Neurologia, Università di Siena, Policlinico le Scotte, Viale Bracci, I-53100, Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Cincotta M, Borgheresi A, Balestrieri F, Giovannelli F, Ragazzoni A, Vanni P, Benvenuti F, Zaccara G, Ziemann U. Mechanisms underlying mirror movements in Parkinson's disease: A transcranial magnetic stimulation study. Mov Disord 2006; 21:1019-25. [PMID: 16547917 DOI: 10.1002/mds.20850] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The neural mechanisms underlying unintended mirror movements (MMs) of one hand during unimanual movements of the other hand in patients with Parkinson's disease (PD) are largely unexplored. Here we used surface electromyographic (EMG) analysis and focal transcranial magnetic stimulation (TMS) to investigate the pathophysiological substrate of MMs in four PD patients. Surface EMG was recorded from both abductor pollicis brevis (APB) and first dorsal interosseous (FDI) muscles. Cross-correlation EMG analysis revealed no common motor drive to the two APBs during intended unimanual tasks. Focal TMS of either primary motor cortex (M1) elicited normal motor-evoked potentials (MEPs) in the contralateral APB, whereas MEPs were not seen in the ipsilateral hand. During either mirror or voluntary APB contraction, focal TMS of the contralateral M1 produced a long-lasting silent period (SP), whereas stimulation of the ipsilateral M1 produced a short-lasting SP. During either mirror or voluntary finger tapping, 5 Hz repetitive TMS (rTMS) of the contralateral M1 disrupted EMG activity in the target FDI, whereas the effects of rTMS of the ipsilateral M1 were by far slighter. During either mirror or voluntary APB contraction, paired-pulse TMS showed a reduction of short-interval intracortical inhibition in the contralateral M1. These findings provide converging evidence that, in PD, MMs do not depend on unmasking of ipsilateral projections but are explained by motor output along the crossed corticospinal projection from the mirror M1.
Collapse
|
37
|
Cincotta M, Giovannelli F, Borgheresi A, Balestrieri F, Vanni P, Ragazzoni A, Zaccara G, Ziemann U. Surface electromyography shows increased mirroring in Parkinson's disease patients without overt mirror movements. Mov Disord 2006; 21:1461-5. [PMID: 16705686 DOI: 10.1002/mds.20972] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Patients with Parkinson's disease (PD) may present mirror movements (MM). Transcranial magnetic stimulation data indicate that these movements reflect an abnormal enhancement of the "physiological mirroring" that can be observed in healthy adults during complex and effortful tasks. It was hypothesized that, in PD, enhanced mirroring is caused by a failure of basal ganglia output to support the cortical network that is responsible for the execution of strictly unimanual movements. If so, it is likely that subtle alterations of voluntary unimanual motor control are also present in PD patients without overt MM. We tested this hypothesis by using surface electromyographic (EMG) techniques in 12 mildly to moderately affected PD patients without overt MM, and in 2 control groups (12 age-matched and 10 young healthy volunteers). Subjects performed unilateral phasic thumb abduction during a sustained tonic contraction of the opposite abductor pollicis brevis. All patients were tested on dopaminergic therapy. On a separate day, 7 of 12 patients were re-tested after withdrawal of medication. During this task, involuntary mirror-like increase in surface EMG of the tonically abducting thumb was significantly larger in PD patients than in age-matched or young healthy volunteers. Off therapy, mirroring was slightly greater than on medication, although this difference was not significant. Our findings suggest that dysfunction of unimanual motor control is a general feature of PD. It is likely that this deficient movement lateralization contributes to an impairment of nonsymmetrical bimanual movements in PD.
Collapse
|
38
|
Carson RG. Neural pathways mediating bilateral interactions between the upper limbs. ACTA ACUST UNITED AC 2005; 49:641-62. [PMID: 15904971 DOI: 10.1016/j.brainresrev.2005.03.005] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 03/09/2005] [Accepted: 03/15/2005] [Indexed: 11/17/2022]
Abstract
The ease with which we perform tasks such as opening the lid of a jar, in which the two hands execute quite different actions, belies the fact that there is a strong tendency for the movements of the upper limbs to be drawn systematically towards one another. Mirror movements, involuntary contractions during intended unilateral engagement of the opposite limb, are considered pathological, as they occur in association with specific disorders of the CNS. Yet they are also observed frequently in normally developing children, and motor irradiation, an increase in the excitability of the (opposite) homologous motor pathways when unimanual movements are performed, is a robust feature of the mature motor system. The systematic nature of the interactions that occur between the upper limbs has also given rise to the expectation that functional improvements in the control of a paretic limb may occur when movements are performed in a bimanual context. In spite of the ubiquitous nature of these phenomena, there is remarkably little consensus concerning the neural basis of their mediation. In the present review, consideration is given to the putative roles of uncrossed corticofugal fibers, branched bilateral corticomotoroneuronal projections, and segmental networks. The potential for bilateral interactions to occur in various brain regions including the primary motor cortex, the supplementary motor area, non-primary motor areas, the basal ganglia, and the cerebellum is also explored. This information may provide principled bases upon which to evaluate and develop task and deficit-specific programs of movement rehabilitation and therapy.
Collapse
Affiliation(s)
- R G Carson
- Perception and Motor Systems Laboratory, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|