1
|
Lorincz D, Drury HR, Smith DW, Lim R, Brichta AM. Aged mice are less susceptible to motion sickness and show decreased efferent vestibular activity compared to young adults. Brain Behav 2023; 13:e3064. [PMID: 37401009 PMCID: PMC10454360 DOI: 10.1002/brb3.3064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
INTRODUCTION The efferent vestibular system (EVS) is a feedback circuit thought to modulate vestibular afferent activity by inhibiting type II hair cells and exciting calyx-bearing afferents in the peripheral vestibular organs. In a previous study, we suggested EVS activity may contribute to the effects of motion sickness. To determine an association between motion sickness and EVS activity, we examined the effects of provocative motion (PM) on c-Fos expression in brainstem efferent vestibular nucleus (EVN) neurons that are the source of efferent innervation in the peripheral vestibular organs. METHODS c-Fos is an immediate early gene product expressed in stimulated neurons and is a well-established marker of neuronal activation. To study the effects of PM, young adult C57/BL6 wild-type (WT), aged WT, and young adult transgenic Chat-gCaMP6f mice were exposed to PM, and tail temperature (Ttail ) was monitored using infrared imaging. After PM, we used immunohistochemistry to label EVN neurons to determine any changes in c-Fos expression. All tissue was imaged using laser scanning confocal microscopy. RESULTS Infrared recording of Ttail during PM indicated that young adult WT and transgenic mice displayed a typical motion sickness response (tail warming), but not in aged WT mice. Similarly, brainstem EVN neurons showed increased expression of c-Fos protein after PM in young adult WT and transgenic mice but not in aged cohorts. CONCLUSION We present evidence that motion sickness symptoms and increased activation of EVN neurons occur in young adult WT and transgenic mice in response to PM. In contrast, aged WT mice showed no signs of motion sickness and no change in c-Fos expression when exposed to the same provocative stimulus.
Collapse
Affiliation(s)
- David Lorincz
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| | - Hannah R. Drury
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| | - Doug W. Smith
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| | - Rebecca Lim
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| | - Alan M. Brichta
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| |
Collapse
|
2
|
Lithgow BJ, Moussavi Z, Gurvich C, Kulkarni J, Maller JJ, Fitzgerald PB. Bipolar disorder in the balance. Eur Arch Psychiatry Clin Neurosci 2019; 269:761-775. [PMID: 30083956 DOI: 10.1007/s00406-018-0935-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 07/30/2018] [Indexed: 12/27/2022]
Abstract
Bipolar disorder (BD) is a severe mood disorder that lacks established electrophysiological, neuroimaging or biological markers to assist with both diagnosis and monitoring disease severity. This study's aim is to describe the potential of new neurophysiological features assistive in BD diagnosis and severity measurement utilizing the recording of electrical activity from the outer ear canal called Electrovestibulography (EVestG). From EVestG data sensory vestibulo-acoustic features were extracted from a single supine-vertical translation stimulus to distinguish 50 depressed and partly remitted/remitted bipolar disorder patients [18 symptomatic (BD-S, MADRS > 19), 32 reduced symptomatic (BD-R, MADRS ≤ 19)] and 31 age and gender matched healthy individuals (controls). Six features were extracted from the measured firing pattern interval histogram and the extracted shape of the average field potential response. Five of the six features had low but significant correlations (p < 0.05) with the MADRS assessment. Using leave-one-out-cross-validation, unbiased parametric and non-parametric classification routines resulted in 75-79%, 84-86%, 76-85% and 79-82% accuracy for separation of control from BD, BD-S and BD-R as well as BD-S from BD-R groups, respectively. The main limitation of this study was the inability to fully disentangle the impact of prescribed medication from the responses recorded. A mix of stationary and movement evoked EVestG features produced good discrimination between control and BD patients whether BD-S or BD-R. Moreover, BD-S and BD-R appear to have measurably different pathophysiological manifestations. The firing pattern features used were dissimilar to those observed in a prior major depressive disorder study.
Collapse
Affiliation(s)
- Brian J Lithgow
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, 607 St Kilda Rd, Melbourne, VIC, Australia.
- Diagnostic and Neurosignal Processing Research Laboratory, Riverview Health Centre, University of Manitoba, Winnipeg, MB, Canada.
| | - Zahra Moussavi
- Diagnostic and Neurosignal Processing Research Laboratory, Riverview Health Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Caroline Gurvich
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, 607 St Kilda Rd, Melbourne, VIC, Australia
| | - Jayashri Kulkarni
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, 607 St Kilda Rd, Melbourne, VIC, Australia
| | - Jerome J Maller
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, 607 St Kilda Rd, Melbourne, VIC, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, 607 St Kilda Rd, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Stimulation or lesion of the medial vestibular nucleus increases the number of choline acetyltransferase-positive efferent vestibular neurons in the brainstem. Neuroreport 2019; 29:1315-1322. [PMID: 30169427 DOI: 10.1097/wnr.0000000000001115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The vestibular center of the brainstem contains afferent and efferent vestibular neurons, which play an important role in information perception, processing, and sensory integration. Vestibular efferent neurons (VENs) can receive changes in vestibular afferent information and regulate peripheral vestibular function; however, it remains unclear how VENs change after vestibular afferent information increases or weakens. In this study, we used animal models with altered vestibular afferent information by electrically stimulating or destroying the vestibular medial nucleus (MVe). We confirmed the location of VENs in the brainstem by injecting five adult male Wistar rats in the vestibular region with a retrograde tracer. Following this, the MVe was stimulated electrically for 30 min in 20 naive rats. Rats were anesthetized and euthanized 1, 3, 6, and 12 h after stimulation. The MVe was electrolytically lesioned in another group (n=20); then, the rats were anesthetized and euthanized 1, 3, 5, and 7 days after lesioning. VENs were clearly identified dorsolateral to the genu of the facial nerve (g7) in coronal brainstem sections using choline acetyltransferase (ChAT) staining. The number of ChAT-positive VENs dorsolateral to g7 increased significantly on both sides compared with the control group 3 and 6 h after electrical stimulation. The number of ChAT-positive VENs dorsolateral to g7 was significantly greater on both sides compared with controls 3 and 5 days after electrolytic lesion. In summary, we found that the number of ChAT-positive VENs was significantly increased following a change in the excitability of MVe neurons. This suggests that VENs can respond to changes in afferent vestibular information and feedback, and regulate the peripheral vestibule. In addition, this shows that acetylcholine is an important neurotransmitter that plays an important role in the perception and fine regulation of the vestibular system.
Collapse
|
4
|
Lithgow BJ, Garrett AL, Moussavi ZM, Gurvich C, Kulkarni J, Maller JJ, Fitzgerald PB. Major depression and electrovestibulography. World J Biol Psychiatry 2016; 16:334-50. [PMID: 25815564 DOI: 10.3109/15622975.2015.1014410] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES No electrophysiological neuroimaging or genetic markers have been established that strongly relate to a diagnosis of major depression or its severity. The objective of this paper is to describe the preliminary evaluation of a potential new biomarker for depression utilizing the recording of electrical activity from the outer ear canal referred to as electrovestibulography (EVestG). METHODS Sensory oto-acoustic features were extracted from EVestG data to compare 31 healthy age- and gender-matched individuals as controls to 43 major depressive disorder (MDD) subjects (22 symptomatic (MDD-S), 21 reduced symptomatic (MDD-R)). The stimulus was a single supine-vertical translation. The six features examined were based on the measured firing pattern interval histogram and the shape of the average field potential response. RESULTS An unbiased classification accuracy of 85, 87 and 77% was achieved for separating Control from MDD-S, Control from MDD, and MDD-S from MDD-R groups respectively. Features used showed low but significant correlations (P < 0.05) with MADRS and CORE assessments. CONCLUSIONS The results support the use of separate features for measuring MDD symptomatology versus diagnosing MDD, representing plausible different mechanisms of brain function in MDD-S and MDD-R. The first evidence of the successful application of sensory oto-acoustic features toward diagnosing and measuring the symptomatology of MDD is presented.
Collapse
Affiliation(s)
- Brian J Lithgow
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and the Alfred Hospital , Melbourne, Victoria Australia
| | | | | | | | | | | | | |
Collapse
|
5
|
Lithgow BJ, Shoushtarian M. Parkinson's disease: disturbed vestibular function and levodopa. J Neurol Sci 2015; 353:49-58. [PMID: 25899315 DOI: 10.1016/j.jns.2015.03.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/19/2015] [Accepted: 03/31/2015] [Indexed: 11/15/2022]
Abstract
Evidence indicates Levodopa effects central postural control. As electrophysiological postural control biomarkers, sensory oto-acoustic features were extracted from Electrovestibulography (EVestG) data to identify 20 healthy age and gender matched individuals as Controls from 20 PD subjects before (PDlowmed) and 18 after (PDmed) morning doses of Levodopa. EVestG data was collected using a single tilt stimulus applied in the pitch plane. The extracted features were based on the measured firing pattern, interval histogram and the shape of the average field potential response. An unbiased cross validated classification accuracy of 88%, 88% and 79% was achieved using combinations of 2 features for separating PDlowmed from control, control from PD (combined PDlowmed and PDmed), and PDlowmed from PDmed groups respectively. One feature showed significant correlations (p<0.05) with the Modified Hoehn and Yahr PD staging scale. The results indicate disturbed vestibular function is observed in both the PDmed and PDlowmed conditions, and these are separable. The implication is that Levodopa may also affect peripheral as well as central postural control.
Collapse
Affiliation(s)
- Brian J Lithgow
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and the Alfred Hospital, 4th Floor, 607St Kilda Rd, Melbourne, Victoria, Australia 3004; Diagnostic and Neurosignal Processing Research Laboratory, Monash University, Wellington Rd, Clayton, Victoria, Australia 3180; Diagnostic and Neurosignal Processing Research Laboratory, University of Manitoba, Riverview Health Centre, 1 Morley St, Winnipeg, MB, Canada R3L 2P4.
| | - Mehrnaz Shoushtarian
- Diagnostic and Neurosignal Processing Research Laboratory, Monash University, Wellington Rd, Clayton, Victoria, Australia 3180.
| |
Collapse
|
6
|
Leijon S, Magnusson AK. Physiological characterization of vestibular efferent brainstem neurons using a transgenic mouse model. PLoS One 2014; 9:e98277. [PMID: 24867596 PMCID: PMC4035287 DOI: 10.1371/journal.pone.0098277] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/30/2014] [Indexed: 01/31/2023] Open
Abstract
The functional role of efferent innervation of the vestibular end-organs in the inner ear remains elusive. This study provides the first physiological characterization of the cholinergic vestibular efferent (VE) neurons in the brainstem by utilizing a transgenic mouse model, expressing eGFP under a choline-acetyltransferase (ChAT)-locus spanning promoter in combination with targeted patch clamp recordings. The intrinsic electrical properties of the eGFP-positive VE neurons were compared to the properties of the lateral olivocochlear (LOC) brainstem neurons, which gives rise to efferent innervation of the cochlea. Both VE and the LOC neurons were marked by their negative resting membrane potential <-75 mV and their passive responses in the hyperpolarizing range. In contrast, the response properties of VE and LOC neurons differed significantly in the depolarizing range. When injected with positive currents, VE neurons fired action potentials faithfully to the onset of depolarization followed by sparse firing with long inter-spike intervals. This response gave rise to a low response gain. The LOC neurons, conversely, responded with a characteristic delayed tonic firing upon depolarizing stimuli, giving rise to higher response gain than the VE neurons. Depolarization triggered large TEA insensitive outward currents with fast inactivation kinetics, indicating A-type potassium currents, in both the inner ear-projecting neuronal types. Immunohistochemistry confirmed expression of Kv4.3 and 4.2 ion channel subunits in both the VE and LOC neurons. The difference in spiking responses to depolarization is related to a two-fold impact of these transient outward currents on somatic integration in the LOC neurons compared to in VE neurons. It is speculated that the physiological properties of the VE neurons might be compatible with a wide-spread control over motion and gravity sensation in the inner ear, providing likewise feed-back amplification of abrupt and strong phasic signals from the semi-circular canals and of tonic signals from the gravito-sensitive macular organs.
Collapse
Affiliation(s)
- Sara Leijon
- Center for Hearing and Communication Research, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Unit of Audiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna K. Magnusson
- Center for Hearing and Communication Research, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Unit of Audiology, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
7
|
Wang J, Chi FL, Xin Y, Regner MF. The distribution of vestibular efferent neurons receiving innervation of secondary vestibular afferent nerves in rats. Laryngoscope 2013; 123:1266-71. [PMID: 23483514 DOI: 10.1002/lary.23847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS To explore the innervation areas of the medial vestibular nucleus (MVN) afferent neurons onto vestibular efferent neurons in the brain stem of rats. STUDY DESIGN A morphology study in the central vestibular system. METHODS Two neuronal tracers were used. Lectin PHA-L Conjugates (PHA-L, Invitrogen L - 11270,) was injected into the MVN as an anterograde tracer, and 5% FluoSpheres carboxylate-modified microspheres (MFS, Molecular Probe F-8793) was injected into the contralateral peripheral vestibule using as a retrograde tracer. All animals were allowed to recover for 12 days to facilitate sufficient transportation of the tracers. Then brain stems were sliced coronally on a freezing microtome and observed under a fluorescence microscope and laser confocal microscopy. RESULTS Neurons in the MVN labeled with PHA-L exhibited green fluorescence, and their axons were distributed near the genu of the facial nerve (g7) and in the reticulation structure, as well as in the cerebellum or oculomotor-related nuclei. Neurons labeled with red fluorescence of MFS were mainly located dorsomedial and dorsolateral to g7 and in the caudal pontine reticular nucleus (PnC) bilaterally and presented different morphologies at different locations. The synaptic junctions would display color overlap (fluoresced yellow). Under three-dimensional reconstruction of the confocal laser microscopy, the synaptic junctions were visualized dorsomedial and dorsolateral to g7 bilaterally, predominantly ipsilateral to the MVN injection site. CONCLUSIONS Morphologic evidence of the distribution of vestibular efferent neurons synapsed by afferent nerves from MVN was demonstrated. These efferent neurons constitute short closed-loop circuits with neurons in the MVN.
Collapse
Affiliation(s)
- Jing Wang
- Department of Otology and Skull Base Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
8
|
|
9
|
Sadeghi SG, Goldberg JM, Minor LB, Cullen KE. Efferent-mediated responses in vestibular nerve afferents of the alert macaque. J Neurophysiol 2008; 101:988-1001. [PMID: 19091917 DOI: 10.1152/jn.91112.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The peripheral vestibular organs have long been known to receive a bilateral efferent innervation from the brain stem. However, the functional role of the efferent vestibular system has remained elusive. In this study, we investigated efferent-mediated responses in vestibular afferents of alert behaving primates (macaque monkey). We found that efferent-mediated rotational responses could be obtained from vestibular nerve fibers innervating the semicircular canals after conventional afferent responses were nulled by placing the corresponding canal plane orthogonal to the plane of motion. Responses were type III, i.e., excitatory for rotational velocity trapezoids (peak velocity, 320 degrees/s) in both directions of rotation, consistent with those previously reported in the decerebrate chinchilla. Responses consisted of both fast and slow components and were larger in irregular (approximately 10 spikes/s) than in regular afferents (approximately 2 spikes/s). Following unilateral labyrinthectomy (UL) on the side opposite the recording site, similar responses were obtained. To confirm the vestibular source of the efferent-mediated responses, the ipsilateral horizontal and posterior canals were plugged following the UL. Responses to high-velocity rotations were drastically reduced when the superior canal (SC), the only intact canal, was in its null position, compared with when the SC was pitched 50 degrees upward from the null position. Our findings show that vestibular afferents in alert primates show efferent-mediated responses that are related to the discharge regularity of the afferent, are of vestibular origin, and can be the result of both afferent excitation and inhibition.
Collapse
Affiliation(s)
- Soroush G Sadeghi
- Department of Physiology, McTGill University, 3655 Prom. Sir William Osler, Rm. 1218, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|