1
|
Perinatal Brain Injury and Inflammation: Lessons from Experimental Murine Models. Cells 2020; 9:cells9122640. [PMID: 33302543 PMCID: PMC7764185 DOI: 10.3390/cells9122640] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Perinatal brain injury or neonatal encephalopathy (NE) is a state of disturbed neurological function in neonates, caused by a number of different aetiologies. The most prominent cause of NE is hypoxic ischaemic encephalopathy, which can often induce seizures. NE and neonatal seizures are both associated with poor neurological outcomes, resulting in conditions such as cerebral palsy, epilepsy, autism, schizophrenia and intellectual disability. The current treatment strategies for NE and neonatal seizures have suboptimal success in effectively treating neonates. Therapeutic hypothermia is currently used to treat NE and has been shown to reduce morbidity and has neuroprotective effects. However, its success varies between developed and developing countries, most likely as a result of lack of sufficient resources. The first-line pharmacological treatment for NE is phenobarbital, followed by phenytoin, fosphenytoin and lidocaine as second-line treatments. While these drugs are mostly effective at halting seizure activity, they are associated with long-lasting adverse neurological effects on development. Over the last years, inflammation has been recognized as a trigger of NE and seizures, and evidence has indicated that this inflammation plays a role in the long-term neuronal damage experienced by survivors. Researchers are therefore investigating the possible neuroprotective effects that could be achieved by using anti-inflammatory drugs in the treatment of NE. In this review we will highlight the current knowledge of the inflammatory response after perinatal brain injury and what we can learn from animal models.
Collapse
|
2
|
How to Improve the Antioxidant Defense in Asphyxiated Newborns-Lessons from Animal Models. Antioxidants (Basel) 2020; 9:antiox9090898. [PMID: 32967335 PMCID: PMC7554981 DOI: 10.3390/antiox9090898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Oxygen free radicals have been implicated in brain damage after neonatal asphyxia. In the early phase of asphyxia/reoxygenation, changes in antioxidant enzyme activity play a pivotal role in switching on and off the cascade of events that can kill the neurons. Hypoxia/ischemia (H/I) forces the brain to activate endogenous mechanisms (e.g., antioxidant enzymes) to compensate for the lost or broken neural circuits. It is important to evaluate therapies to enhance the self-protective capacity of the brain. In animal models, decreased body temperature during neonatal asphyxia has been shown to increase cerebral antioxidant capacity. However, in preterm or severely asphyxiated newborns this therapy, rather than beneficial seems to be harmful. Thus, seeking new therapeutic approaches to prevent anoxia-induced complications is crucial. Pharmacotherapy with deferoxamine (DFO) is commonly recognized as a beneficial regimen for H/I insult. DFO, via iron chelation, reduces oxidative stress. It also assures an optimal antioxidant protection minimizing depletion of the antioxidant enzymes as well as low molecular antioxidants. In the present review, some aspects of recently acquired insight into the therapeutic effects of hypothermia and DFO in promoting neuronal survival after H/I are discussed.
Collapse
|
3
|
Kumar AJ, Motta‐Teixeira LC, Takada SH, Yonamine‐Lee V, Machado‐Nils AV, Xavier GF, Nogueira MI. Behavioral, cognitive and histological changes following neonatal anoxia: Male and female rats' differences at adolescent age. Int J Dev Neurosci 2018; 73:50-58. [DOI: 10.1016/j.ijdevneu.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/07/2018] [Accepted: 12/12/2018] [Indexed: 01/14/2023] Open
Affiliation(s)
- Amrita Jha Kumar
- Neurosciences LaboratoryDepartment of AnatomyInstitute of Biomedical Sciences, University of São PauloAv. Professor Lineu Prestes, 241505508‐900São PauloSPBrazil
| | - Lívia Clemente Motta‐Teixeira
- Department of PhysiologyInstitute of Biosciences, University of São PauloRua do Matão 1405508‐900São PauloSPBrazil
- Neurobiology lab.Department of PhysiologyInstitute of Biomedical Sciences, University of São PauloAv. Prof. Lineu Prestes, 152405508‐900São PauloSPBrazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Federal University of ABCBloco Delta. R. Arcturus 309606‐070São Bernardo do CampoSPBrazil
| | - Vitor Yonamine‐Lee
- Neurosciences LaboratoryDepartment of AnatomyInstitute of Biomedical Sciences, University of São PauloAv. Professor Lineu Prestes, 241505508‐900São PauloSPBrazil
| | - Aline Vilar Machado‐Nils
- Department of PhysiologyInstitute of Biosciences, University of São PauloRua do Matão 1405508‐900São PauloSPBrazil
| | - Gilberto Fernando Xavier
- Department of PhysiologyInstitute of Biosciences, University of São PauloRua do Matão 1405508‐900São PauloSPBrazil
| | - Maria Inês Nogueira
- Neurosciences LaboratoryDepartment of AnatomyInstitute of Biomedical Sciences, University of São PauloAv. Professor Lineu Prestes, 241505508‐900São PauloSPBrazil
| |
Collapse
|
4
|
Hefter D, Marti HH, Gass P, Inta D. Perinatal Hypoxia and Ischemia in Animal Models of Schizophrenia. Front Psychiatry 2018; 9:106. [PMID: 29651259 PMCID: PMC5884869 DOI: 10.3389/fpsyt.2018.00106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/16/2018] [Indexed: 12/12/2022] Open
Abstract
Intrauterine or perinatal complications constitute a major risk for psychiatric diseases. Infants who suffered from hypoxia-ischemia (HI) are at twofold risk to develop schizophrenia in later life. Several animal models attempt to reproduce these complications to study the yet unknown steps between an insult in early life and outbreak of the disease decades later. However, it is very challenging to find the right type and severity of insult leading to a disease-like phenotype in the animal, but not causing necrosis and focal neurological deficits. By contrast, too mild, repetitive insults may even be protective via conditioning effects. Thus, it is not surprising that animal models of hypoxia lead to mixed results. To achieve clinically translatable findings, better protocols are urgently needed. Therefore, we compare widely used models of hypoxia and HI and propose future directions for the field.
Collapse
Affiliation(s)
- Dimitri Hefter
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany.,RG Neuro- and Sensory Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Hugo H Marti
- RG Neurovascular Research, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany
| | - Dragos Inta
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany.,Department of Psychiatry, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Kletkiewicz H, Hyjek M, Jaworski K, Nowakowska A, Rogalska J. Activation of hypoxia-inducible factor-1α in rat brain after perinatal anoxia: role of body temperature. Int J Hyperthermia 2017; 34:824-833. [DOI: 10.1080/02656736.2017.1385860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hanna Kletkiewicz
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Malwina Hyjek
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Jaworski
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Anna Nowakowska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Justyna Rogalska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
6
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
7
|
Deferoxamine improves antioxidative protection in the brain of neonatal rats: The role of anoxia and body temperature. Neurosci Lett 2016; 628:116-22. [PMID: 27297770 DOI: 10.1016/j.neulet.2016.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 01/24/2023]
Abstract
After hypoxic-ischemic insult iron deposited in the brain catalyzes formation of reactive oxygen species. Newborn rats, showing reduced physiological body temperature and their hyperthermic counterparts injected with deferoxamine (DF), a chelator of iron, are protected both against iron-mediated neurotoxicity and against depletion of low-molecular antioxidants after perinatal asphyxia. Therefore, we decided to study the effects of DF on activity of antioxidant enzymes (superoxide dismutase-SOD, glutathione peroxidase-GPx and catalase-CAT) in the brain of rats exposed neonatally to a critical anoxia at body temperatures elevated to 39°C. Perinatal anoxia under hyperthermic conditions intensified oxidative stress and depleted the pool of antioxidant enzymes. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The present paper evidenced that deferoxamine may act by recovering of SOD, GPx and CAT activity to reduce anoxia-induced oxidative stress.
Collapse
|
8
|
Kletkiewicz H, Nowakowska A, Siejka A, Mila-Kierzenkowska C, Woźniak A, Caputa M, Rogalska J. Deferoxamine prevents cerebral glutathione and vitamin E depletions in asphyxiated neonatal rats: role of body temperature. Int J Hyperthermia 2016; 32:211-20. [PMID: 26794834 DOI: 10.3109/02656736.2015.1125955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hypoxic-ischaemic brain injury involves increased oxidative stress. In asphyxiated newborns iron deposited in the brain catalyses formation of reactive oxygen species. Glutathione (GSH) and vitamin E are key factors protecting cells against such agents. Our previous investigation has demonstrated that newborn rats, showing physiological low body temperature as well as their hyperthermic counterparts injected with deferoxamine (DF) are protected against iron-mediated, delayed neurotoxicity of perinatal asphyxia. Therefore, we decided to study the effects of body temperature and DF on the antioxidant status of the brain in rats exposed neonatally to critical anoxia. Two-day-old newborn rats were exposed to anoxia in 100% nitrogen atmosphere for 10 min. Rectal temperature was kept at 33 °C (physiological to rat neonates), or elevated to the level typical of healthy adult rats (37 °C), or of febrile adult rats (39 °C). Half of the rats exposed to anoxia under extremely hyperthermic conditions (39 °C) were injected with DF. Cerebral concentrations of malondialdehyde (MDA, lipid peroxidation marker) and the levels of GSH and vitamin E were determined post-mortem, (1) immediately after anoxia, (2) 3 days, (3) 7 days, and (4) 2 weeks after anoxia. There were no post-anoxic changes in MDA, GSH and vitamin E concentrations in newborn rats kept at body temperature of 33 °C. In contrast, perinatal anoxia at elevated body temperatures intensified oxidative stress and depleted the antioxidant pool in a temperature-dependent manner. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The data support the idea that hyperthermia may extend perinatal anoxia-induced brain lesions.
Collapse
Affiliation(s)
- Hanna Kletkiewicz
- a N. Copernicus University , Department of Animal Physiology, Faculty of Biology and Environmental Protection , Toruń , Poland and
| | - Anna Nowakowska
- a N. Copernicus University , Department of Animal Physiology, Faculty of Biology and Environmental Protection , Toruń , Poland and
| | - Agnieszka Siejka
- a N. Copernicus University , Department of Animal Physiology, Faculty of Biology and Environmental Protection , Toruń , Poland and
| | | | - Alina Woźniak
- b N. Copernicus University , Department of Medical Biology, Collegium Medicum , Bydgoszcz , Poland
| | - Michał Caputa
- a N. Copernicus University , Department of Animal Physiology, Faculty of Biology and Environmental Protection , Toruń , Poland and
| | - Justyna Rogalska
- a N. Copernicus University , Department of Animal Physiology, Faculty of Biology and Environmental Protection , Toruń , Poland and
| |
Collapse
|
9
|
Neonatal anoxia in rats: hippocampal cellular and subcellular changes related to cell death and spatial memory. Neuroscience 2014; 284:247-259. [PMID: 25305666 DOI: 10.1016/j.neuroscience.2014.08.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 08/16/2014] [Accepted: 08/19/2014] [Indexed: 11/20/2022]
Abstract
Neonatal anoxia in rodents has been used to understand brain changes and cognitive dysfunction following asphyxia. This study investigated the time-course of cellular and subcellular changes and hippocampal cell death in a non-invasive model of anoxia in neonatal rats, using Terminal deoxynucleotidyl transferase-mediated dUTP Nick End Labeling (TUNEL) to reveal DNA fragmentation, Fluoro-Jade® B (FJB) to show degenerating neurons, cleaved caspase-3 immunohistochemistry (IHC) to detect cells undergoing apoptosis, and transmission electron microscopy (TEM) to reveal fine ultrastructural changes related to cell death. Anoxia was induced by exposing postnatal day 1 (P1) pups to a flow of 100% gaseous nitrogen for 25 min in a chamber maintained at 37 °C. Control rats were similarly exposed to this chamber but with air flow instead of nitrogen. Brain changes following anoxia were evaluated at postnatal days 2, 14, 21 and 60 (P2, P14, P21 and P60). In addition, spatial reference memory following anoxia and control treatments was evaluated in the Morris water maze, starting at P60. Compared to their respective controls, P2 anoxic rats exhibited (1) higher TUNEL labeling in cornus ammonis (CA) 1 and the dentate gyrus (DG), (2) higher FJB-positive cells in the CA2-3, and (3) somato-dendritic swelling, mitochondrial injury and chromatin condensation in irregular bodies, as well as other subcellular features indicating apoptosis, necrosis, autophagy and excitotoxicity in the CA1, CA2-3 and DG, as revealed by TEM. At P14, P21 and P60, both groups showed small numbers of TUNEL-positive and FJB-positive cells. Stereological analysis at P2, P14, P21 and P60 revealed a lack of significant differences in cleaved caspase-3 IHC between anoxic and control subjects. These results suggest that the type of hippocampal cell death following neonatal anoxia is likely independent of caspase-3 activation. Neonatal anoxia induced deficits in acquisition and performance of spatial reference memory in the Morris water maze task. Compared to control subjects, anoxic animals exhibited increased latencies and path lengths to reach the platform, as well as decreased searching specifically for the platform location. In contrast, no significant differences were observed for swimming speeds and frequency within the target quadrant. Together, these behavioral results indicate that the poorer performance by anoxic subjects is related to spatial memory deficits and not to sensory or motor deficits. Therefore, this model of neonatal anoxia in rats induces hippocampal changes that result in cell losses and impaired hippocampal function, and these changes are likely related to spatial memory deficits in adulthood.
Collapse
|
10
|
Saadeldien HM, Mohamed AA, Hussein MRA. Iron-induced damage in corpus striatal cells of neonatal rats: attenuation by folic acid. Ultrastruct Pathol 2012; 36:89-101. [PMID: 22471431 DOI: 10.3109/01913123.2011.630125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Iron supplementation is recommended during pregnancy to meet the needs of the rapidly growing fetus. However, its intake is associated with the generation of destructive free radicals, i.e., oxidative damage to the fetal brain. Folic acid supplementation is needed during pregnancy to reduce the risk of neural tube defects. HYPOTHESIS Intake of folic acid can ameliorate the morphological features of cell damage in the striatal tissue (brain of neonatal rats) associated with the intake of iron. OBJECTIVES AND METHODS To test this hypothesis, an animal model (pregnant Albino rats) was established. The animals were divided into three groups: group A, control animals treated with saline only; group B, animals treated with iron gluconate; and group C, animals treated concomitantly with iron gluconate and folic acid. The striatal brain tissues of the neonates were examined for features of cellular damage, using immunohistological and ultrastructural methods. RESULTS The authors found significant variations among the three groups. The intake of iron (group B) and its deposition in the striatal tissue (neurons and glial cells) was associated with changes indicative of both cellular injury and regeneration. The former includes neuronal apoptosis and necrosis, and destruction of the organelles, including the mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes of the neurons and glial cells. The latter includes microgliosis, astrogliosis, upregulation of glial fibrillary acidic protein, and inducible nitric oxide synthase. These changes were absent in the striatal tissue of the control group (group A) and in animals treated concomitantly with both iron gluconate and folic acid (group C). CONCLUSION Intake of folic acid can protect the neonatal striatal tissue against iron-induced oxidative stress damage.
Collapse
Affiliation(s)
- Heba M Saadeldien
- Department of Histology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | | |
Collapse
|
11
|
Gutierrez S, Carnes A, Finucane B, Musci G, Oelsner W, Hicks L, Russell GB, Liu C, Turner CP. Is age-dependent, ketamine-induced apoptosis in the rat somatosensory cortex influenced by temperature? Neuroscience 2010; 168:253-62. [PMID: 20298758 DOI: 10.1016/j.neuroscience.2010.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/09/2010] [Accepted: 03/08/2010] [Indexed: 01/18/2023]
Abstract
General anesthetics have long been thought to be relatively safe but recent clinical studies have revealed that exposure of very young children (4 years or less) to agents that act by blocking the N-methyl-D-aspartate receptor (NMDAR) can lead to cognitive deficits as they mature. In rodent and non-human primate studies, blockade of this receptor during the perinatal period leads to a number of molecular, cellular and behavioral pathologies. Despite the overwhelming evidence from such studies, doubt remains as to their clinical relevance. A key issue is whether the primary injury (apoptotic cell death) is specific to receptor blockade or due to non-specific, patho-physiological changes. Principal to this argument is that loss of core body temperature following NMDAR blockade could explain why injury is observed hours later. We therefore examined the neurotoxicity of the general anesthetic ketamine in P7, P14 and P21 rats while monitoring core body temperature. We found that, at P7, ketamine induced the pro-apoptotic enzyme activated caspase-3 in a dose-dependent manner. As expected, injury was greatly diminished by P14 and absent by P21. However, contrary to expectations, we found that core body temperature was not a factor in determining injury. Our data imply that injury is directly related to receptor blockade and is unlikely to be overcome by artificially changing core body temperature.
Collapse
Affiliation(s)
- S Gutierrez
- Department of Neurobiology & Anatomy, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rogalska J, Caputa M. Neonatal asphyxia under hyperthermic conditions alters HPA axis function in juvenile rats. Neurosci Lett 2010; 472:68-72. [DOI: 10.1016/j.neulet.2010.01.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/18/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
|
13
|
Rogalska J. Mineralocorticoid and glucocorticoid receptors in hippocampus: their impact on neurons survival and behavioral impairment after neonatal brain injury. VITAMINS AND HORMONES 2010; 82:391-419. [PMID: 20472149 DOI: 10.1016/s0083-6729(10)82020-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Glucocorticoids (GC) exert multiple effects within the central nervous system via mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) activation. MR expression is associated with a neuroprotective phenotype, whereas GR activation is implicated in the induction of an endangered neural phenotype and the opposite actions are most evident in hippocampus, where these receptors are predominantly present. Hippocampus has an overall inhibitory influence on the activity of the hypothalamic-pituitary-adrenal (HPA) axis and it has been suggested that efficient learning and adequate stress response depend on the appropriate functioning of the axis brought by coordinated activation of MR and GR in this region. There is a growing body of evidence that perinatal asphyxia causes irreversible damage to the brain leading to neurons loss in regions vulnerable to oxygen shortage especially in hippocampus. In the present review, some aspects of recently acquired insight in the role of GC receptors in promoting neuronal death and survival after hippocampal injury are discussed. Since the unbalance of MR and GR in hippocampus creates a condition of disturbed neuroendocrine regulation their potential impact on behavioral impairment will also be reviewed.
Collapse
Affiliation(s)
- Justyna Rogalska
- Department of Animal Physiology, Institute of General and Molecular Biology, N. Copernicus University, Torun, Poland
| |
Collapse
|
14
|
Rogalska J, Caputa M, Piątkowska K, Nowakowska A. Neonatal asphyxia and hyperthermia and cognitive deficits in adult rats: Role of iron. J Therm Biol 2009. [DOI: 10.1016/j.jtherbio.2009.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|