1
|
Tokatly Latzer I, Bertoldi M, Blau N, DiBacco ML, Elsea SH, García-Cazorla À, Gibson KM, Gropman AL, Hanson E, Hoffman C, Jeltsch K, Juliá-Palacios N, Knerr I, Lee HHC, Malaspina P, McConnell A, Opladen T, Oppebøen M, Rotenberg A, Walterfang M, Wang-Tso L, Wevers RA, Roullet JB, Pearl PL. Consensus guidelines for the diagnosis and management of succinic semialdehyde dehydrogenase deficiency. Mol Genet Metab 2024; 142:108363. [PMID: 38452608 PMCID: PMC11073920 DOI: 10.1016/j.ymgme.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) (OMIM #271980) is a rare autosomal recessive metabolic disorder caused by pathogenic variants of ALDH5A1. Deficiency of SSADH results in accumulation of γ-aminobutyric acid (GABA) and other GABA-related metabolites. The clinical phenotype of SSADHD includes a broad spectrum of non-pathognomonic symptoms such as cognitive disabilities, communication and language deficits, movement disorders, epilepsy, sleep disturbances, attention problems, anxiety, and obsessive-compulsive traits. Current treatment options for SSADHD remain supportive, but there are ongoing attempts to develop targeted genetic therapies. This study aimed to create consensus guidelines for the diagnosis and management of SSADHD. Thirty relevant statements were initially addressed by a systematic literature review, resulting in different evidence levels of strength according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. The highest level of evidence (level A), based on randomized controlled trials, was unavailable for any of the statements. Based on cohort studies, Level B evidence was available for 12 (40%) of the statements. Thereupon, through a process following the Delphi Method and directed by the Appraisal of Guidelines for Research and Evaluation (AGREE II) criteria, expert opinion was sought, and members of an SSADHD Consensus Group evaluated all the statements. The group consisted of neurologists, epileptologists, neuropsychologists, neurophysiologists, metabolic disease specialists, clinical and biochemical geneticists, and laboratory scientists affiliated with 19 institutions from 11 countries who have clinical experience with SSADHD patients and have studied the disorder. Representatives from parent groups were also included in the Consensus Group. An analysis of the survey's results yielded 25 (83%) strong and 5 (17%) weak agreement strengths. These first-of-their-kind consensus guidelines intend to consolidate and unify the optimal care that can be provided to individuals with SSADHD.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; School of Medicine, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel Aviv, Israel.
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy.
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Switzerland.
| | - Melissa L DiBacco
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Àngels García-Cazorla
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain.
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| | - Andrea L Gropman
- Division of Neurogenetics and Neurodevelopmental Disabilities, Children's National Hospital, Washington, D.C, USA.
| | - Ellen Hanson
- Human Neurobehavioral Core, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, MA 02115, USA.
| | | | - Kathrin Jeltsch
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany.
| | - Natalia Juliá-Palacios
- Neurometabolic Unit, Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain.
| | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland, Temple Street, Dublin, Ireland.
| | - Henry H C Lee
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Patrizia Malaspina
- Department of Biology, Tor Vergata University, Via della Ricerca Scientifica s.n.c., Rome 00133, Italy.
| | | | - Thomas Opladen
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany.
| | | | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Mark Walterfang
- Neuropsychiatry, Royal Melbourne Hospital, Melbourne, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Department of Health and Medical Sciences, Edith Cowan University, Perth, Australia.
| | - Lee Wang-Tso
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Asadi-Pooya AA, Malekpour M, Taherifard E, Mallahzadeh A, Farjoud Kouhanjani M. Coexistence of temporal lobe epilepsy and idiopathic generalized epilepsy. Epilepsy Behav 2024; 151:109602. [PMID: 38160579 DOI: 10.1016/j.yebeh.2023.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE We investigated the frequency of coexistence of temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) in a retrospective database study. We also explored the underlying pathomechanisms of the coexistence of TLE and IGE based on the available information, using bioinformatics tools. METHODS The first phase of the investigation was a retrospective study. All patients with an electro-clinical diagnosis of epilepsy were studied at the outpatient epilepsy clinic at Shiraz University of Medical Sciences, Shiraz, Iran, from 2008 until 2023. In the second phase, we searched the following databases for genetic variations (epilepsy-associated genetic polymorphisms) that are associated with TLE or syndromes of IGE: DisGeNET, genome-wide association study (GWAS) Catalog, epilepsy genetic association database (epiGAD), and UniProt. We also did a separate literature search using PubMed. RESULTS In total, 3760 patients with epilepsy were registered at our clinic; four patients with definitely mixed TLE and IGE were identified; 0.1% of all epilepsies. We could identify that rs1883415 of ALDH5A1, rs137852779 of EFHC1, rs211037 of GABRG2, rs1130183 of KCNJ10, and rs1045642 of ABCB1 genes are shared between TLE and syndromes of IGE. CONCLUSION While coexistence of TLE and IGE is a rare phenomenon, this could be explained by shared genetic variations.
Collapse
Affiliation(s)
- Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Mahdi Malekpour
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Taherifard
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arashk Mallahzadeh
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
3
|
Tsortouktzidis D, Schulz H, Hamed M, Vatter H, Surges R, Schoch S, Sander T, Becker AJ, van Loo KMJ. Gene expression analysis in epileptic hippocampi reveals a promoter haplotype conferring reduced aldehyde dehydrogenase 5a1 expression and responsiveness. Epilepsia 2020; 62:e29-e34. [PMID: 33319393 DOI: 10.1111/epi.16789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 11/29/2022]
Abstract
Increasing evidence indicates the pathogenetic relevance of regulatory genomic motifs for variability in the manifestation of brain disorders. In this context, cis-regulatory effects of single nucleotide polymorphisms (SNPs) on gene expression can contribute to changing transcript levels of excitability-relevant molecules and episodic seizure manifestation in epilepsy. Biopsy specimens of patients undergoing epilepsy surgery for seizure relief provide unique insights into the impact of promoter SNPs on corresponding mRNA expression. Here, we have scrutinized whether two linked regulatory SNPs (rs2744575; 4779C > G and rs4646830; 4854C > G) located in the aldehyde dehydrogenase 5a1 (succinic semialdehyde dehydrogenase; ALDH5A1) gene promoter are associated with expression of corresponding mRNAs in epileptic hippocampi (n = 43). The minor ALDH5A1-GG haplotype associates with significantly lower ALDH5A1 transcript abundance. Complementary in vitro analyses in neural cell cultures confirm this difference and further reveal a significantly constricted range for the minor ALDH5A1 haplotype of promoter activity regulation through the key epileptogenesis transcription factor Egr1 (early growth response 1). The present data suggest systematic analyses in human hippocampal tissue as a useful approach to unravel the impact of epilepsy candidate SNPs on associated gene expression. Aberrant ALDH5A1 promoter regulation in functional terms can contribute to impaired γ-aminobutyric acid homeostasis and thereby network excitability and seizure propensity.
Collapse
Affiliation(s)
- Despina Tsortouktzidis
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Herbert Schulz
- Cologne Center of Genomics, University of Cologne, Germany
| | - Motaz Hamed
- Clinic for Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Hartmut Vatter
- Clinic for Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Thomas Sander
- Cologne Center of Genomics, University of Cologne, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Karen M J van Loo
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany.,Department of Epileptology, Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
dos Santos BP, Marinho CRM, Marques TEBS, Angelo LKG, Malta MVDS, Duzzioni M, de Castro OW, Leite JP, Barbosa FT, Gitaí DLG. Genetic susceptibility in Juvenile Myoclonic Epilepsy: Systematic review of genetic association studies. PLoS One 2017; 12:e0179629. [PMID: 28636645 PMCID: PMC5479548 DOI: 10.1371/journal.pone.0179629] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Several genetic association investigations have been performed over the last three decades to identify variants underlying Juvenile Myoclonic Epilepsy (JME). Here, we evaluate the accumulating findings and provide an updated perspective of these studies. METHODOLOGY A systematic literature search was conducted using the PubMed, Embase, Scopus, Lilacs, epiGAD, Google Scholar and Sigle up to February 12, 2016. The quality of the included studies was assessed by a score and classified as low and high quality. Beyond outcome measures, information was extracted on the setting for each study, characteristics of population samples and polymorphisms. RESULTS Fifty studies met eligibility criteria and were used for data extraction. With a single exception, all studies used a candidate gene approach, providing data on 229 polymorphisms in or near 55 different genes. Of variants investigating in independent data sets, only rs2029461 SNP in GRM4, rs3743123 in CX36 and rs3918149 in BRD2 showed a significant association with JME in at least two different background populations. The lack of consistent associations might be due to variations in experimental design and/or limitations of the approach. CONCLUSIONS Thus, despite intense research evidence established, specific genetic variants in JME susceptibility remain inconclusive. We discussed several issues that may compromise the quality of the results, including methodological bias, endophenotype and potential involvement of epigenetic factors. PROSPERO REGISTRATION NUMBER CRD42016036063.
Collapse
Affiliation(s)
- Bruna Priscila dos Santos
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Chiara Rachel Maciel Marinho
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - Layanne Kelly Gomes Angelo
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Maísa Vieira da Silva Malta
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Marcelo Duzzioni
- Department of Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Olagide Wagner de Castro
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - João Pereira Leite
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| |
Collapse
|
5
|
Photosensitivity and epilepsy: Current concepts and perspectives-A narrative review. Seizure 2017; 50:209-218. [PMID: 28532712 DOI: 10.1016/j.seizure.2017.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 01/15/2023] Open
Abstract
The authors review the influence of photic stimuli on the generation of epileptic seizures, addressing the first descriptions of the phenomenon and its subsequent exploration. Initially defined in the 1950's, links between intermittent photic stimulation (IPS) and seizures were well understood by the 1970. Since then the increasing exposure to photic stimuli associated with modern life (for instance through TVs, patterns, computer games and electronic instruments with flickering displays) has led to an increased interest in this issue. Diverse stimulation procedures have been described and difference in the effects of stimulation frequencies and types, colour and lighting have been recognised. Approximately 5% of patients with epilepsy have photosensitive epilepsy (PSE). PSE is commoner in younger individuals, more frequent in women, often time-limited, generally easy to treat and closely related to generalised epilepsies, especially Juvenile Myoclonic Epilepsy (JME). Structural and functional studies of PSE indicate abnormalities beyond the frontal lobes and evidence for the role of the visual cortex in human PSE. A reduction in connectivity between prefrontal and frontopolar regions and increased connectivity between occipital cortex and the supplementary motor area may be the basis for triggering motor seizures in JME. Due to the changes observed in such areas, it is hypothesised that photoparoxysmal responses (PPR) could be a final expression of pathogenic phenomena in the striato-thalamocortical system, and possibly a core feature of JME as system epilepsy. The familial transmission of epileptiform responses to IPS is well-recognised, but no clear relation between PSE and specific genes has emerged. Although the influence of ethnic factors on PSE has been widely studied, clear conclusions are still lacking. Pharmacological therapeutic approaches are beyond the scope of this review although preventive measures allowing patients to avoid PS seizure initiation and/or generalisation are discussed. Given the gender/age group most commonly affected by PSE, the risks and benefits of drug treatment need to be carefully weighed up.
Collapse
|
6
|
Baghel R, Grover S, Kaur H, Jajodia A, Parween S, Sinha J, Srivastava A, Srivastava AK, Bala K, Chandna P, Kushwaha S, Agarwal R, Kukreti R. Synergistic association of STX1A and VAMP2 with cryptogenic epilepsy in North Indian population. Brain Behav 2016; 6:e00490. [PMID: 27458546 PMCID: PMC4951625 DOI: 10.1002/brb3.490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 03/05/2016] [Accepted: 03/29/2016] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION "Common epilepsies", merely explored for genetics are the most frequent, nonfamilial, sporadic cases in hospitals. Because of their much debated molecular pathology, there is a need to focus on other neuronal pathways including the existing ion channels. METHODS For this study, a total of 214 epilepsy cases of North Indian ethnicity comprising 59.81% generalized, 40.19% focal seizures, and based on epilepsy types, 17.29% idiopathic, 37.38% cryptogenic, and 45.33% symptomatic were enrolled. Additionally, 170 unrelated healthy individuals were also enrolled. Here, we hypothesize the involvement of epilepsy pathophysiology genes, that is, synaptic vesicle cycle, SVC genes (presynapse), ion channels and their functionally related genes (postsynapse). An interactive analysis was initially performed in SVC genes using multifactor dimensionality reduction (MDR). Further, in order to understand the influence of ion channels and their functionally related genes, their interaction analysis with SVC genes was also performed. RESULTS A significant interactive two-locus model of STX1A_rs4363087|VAMP2_rs2278637 (presynaptic genes) was observed among SVC variants in all epilepsy cases (P 1000-value = 0.054; CVC = 9/10; OR = 2.86, 95%CI = 1.88-4.35). Further, subgroup analysis revealed stronger interaction for the same model in cryptogenic epilepsy patients only (P 1000-value = 0.012; CVC = 10/10; OR = 4.59, 95%CI = 2.57-8.22). However, interactive analysis of presynaptic and postsynaptic genes did not show any significant association. CONCLUSIONS Significant synergistic interaction of SVC genes revealed the possible functional relatedness of presynapse with pathophysiology of cryptogenic epilepsy. Further, to establish the clinical utility of the results, replication in a large and similar phenotypic group of patients is warranted.
Collapse
Affiliation(s)
- Ruchi Baghel
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India
| | - Sandeep Grover
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India; Division of Pneumonology-Immunology Department of Paediatrics Charité University Medical Centre Berlin Germany
| | - Harpreet Kaur
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India
| | - Ajay Jajodia
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India
| | - Shama Parween
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India
| | - Juhi Sinha
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India
| | - Ankit Srivastava
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India
| | - Achal Kumar Srivastava
- Neurology Department Neuroscience Centre All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Kiran Bala
- Institute of Human Behavior & Allied Sciences (IHBAS) Dilshad Garden Delhi 110 095 India
| | | | - Suman Kushwaha
- Institute of Human Behavior & Allied Sciences (IHBAS) Dilshad Garden Delhi 110 095 India
| | - Rachna Agarwal
- Institute of Human Behavior & Allied Sciences (IHBAS) Dilshad Garden Delhi 110 095 India
| | - Ritushree Kukreti
- Council of Scientific and Industrial Research (CSIR) Institute of Genomics and Integrative Biology (IGIB) Mall Road Delhi 110 007 India
| |
Collapse
|
7
|
Malaspina P, Roullet JB, Pearl PL, Ainslie GR, Vogel KR, Gibson KM. Succinic semialdehyde dehydrogenase deficiency (SSADHD): Pathophysiological complexity and multifactorial trait associations in a rare monogenic disorder of GABA metabolism. Neurochem Int 2016; 99:72-84. [PMID: 27311541 DOI: 10.1016/j.neuint.2016.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
Abstract
Discovered some 35 years ago, succinic semialdehyde dehydrogenase deficiency (SSADHD) represents a rare, autosomal recessively-inherited defect in the second step of the GABA degradative pathway. Some 200 patients have been reported, with broad phenotypic and genotypic heterogeneity. SSADHD represents an unusual neurometabolic disorder in which two neuromodulatory agents, GABA (and the GABA analogue, 4-hydroxybutyrate), accumulate to supraphysiological levels. The unexpected occurrence of epilepsy in several patients is counterintuitive in view of the hyperGABAergic state, in which sedation might be expected. However, the epileptic status of some patients is most likely represented by broader imbalances of GABAergic and glutamatergic neurotransmission. Cumulative research encompassing decades of basic and clinical study of SSADHD reveal a monogenic disease with broad pathophysiological and clinical phenotypes. Numerous metabolic perturbations unmasked in SSADHD include alterations in oxidative stress parameters, dysregulation of autophagy and mitophagy, dysregulation of both inhibitory and excitatory neurotransmitters and gene expression, and unique subsets of SNP alterations of the SSADH gene (so-called ALDH5A1, or aldehyde dehydrogenase 5A1 gene) on the 6p22 chromosomal arm. While seemingly difficult to collate and interpret, these anomalies have continued to open novel pathways for pharmacotherapeutic considerations. Here, we present an update on selected aspects of SSADHD, the ALDH5A1 gene, and future avenues for research on this rare disorder of GABA metabolism.
Collapse
Affiliation(s)
- P Malaspina
- Department of Biology, University "Tor Vergata", Rome, Italy
| | - J-B Roullet
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - P L Pearl
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - G R Ainslie
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - K R Vogel
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - K M Gibson
- Division of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA.
| |
Collapse
|
8
|
Promoter variants determine γ-aminobutyric acid homeostasis-related gene transcription in human epileptic hippocampi. J Neuropathol Exp Neurol 2012; 70:1080-8. [PMID: 22082659 DOI: 10.1097/nen.0b013e318238b9af] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
The functional consequences of single nucleotide polymorphisms associated with episodic brain disorders such as epilepsy and depression are unclear. Allelic associations with generalized epilepsies have been reported for single nucleotide polymorphisms rs1883415 (ALDH5A1; succinic semialdehyde dehydrogenase) and rs4906902 (GABRB3; GABAA β3), both of which are present in the 5' regulatory region of genes involved in γ-aminobutyric acid (GABA) homeostasis. To address their allelic association with episodic brain disorders and allele-specific impact on the transcriptional regulation of these genes in human brain tissue, DNA and messenger RNA (mRNA) isolated from hippocampi were obtained at epilepsy surgery of 146 pharmacoresistant mesial temporal lobe epilepsy (mTLE) patients and from 651 healthy controls. We found that the C allele of rs1883415 is accumulated to a greater extentin mTLE versus controls. By real-time quantitative reverse transcription-polymerase chain reaction analyses, individuals homozygous for the C allele showed higher ALDH5A1 mRNA expression. The rs4906902 G allele of the GABRB3 gene was overrepresented in mTLE patients with depression; individuals homozygous for the G allele showed reduced GABRB3 mRNA expression. Bioinformatic analyses suggest that rs1883415 and rs4906902 alter the DNA binding affinity of the transcription factors Egr-3 in ALDH5A1 and MEF-2 in GABRB3 promoters, respectively. Using in vitro luciferase transfection assays, we observed that, in both cases, the transcription factors regulate gene expression depending on the allelic variant in the same direction as in the human hippocampi. Our data suggest that distinct promoter variants may sensitize individuals for differential, potentially stimulus-induced alterations of GABA homeostasis-relevant gene expression. This might contribute to the episodic onset of symptoms and point to new targets for pharmacotherapies.
Collapse
|
9
|
Genetic linkage analysis of a large family with photoparoxysmal response. Epilepsy Res 2011; 99:38-45. [PMID: 22071551 DOI: 10.1016/j.eplepsyres.2011.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/18/2011] [Accepted: 10/09/2011] [Indexed: 11/23/2022]
Abstract
In this study, we report the results of a genetic linkage analysis of a large family with photoparoxysmal response, defined by the presence of a photoparoxysmal response (PPR) on EEG. The participants were genotyped using an 8 cM whole genome wide scan, and both parametric and non-parametric linkage analysis were carried out. The parametric analysis by MLINK did not identify any definite conclusion but a region of interest on chromosome 1 near marker D1S2865; and non-parametric linkage analysis found a locus of interest on chromosome 16, near marker D16S2621. The possible confounding factors for, and pathogenic implication of, and the results are discussed.
Collapse
|
10
|
Kim KJ, Pearl PL, Jensen K, Snead OC, Malaspina P, Jakobs C, Gibson KM. Succinic semialdehyde dehydrogenase: biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance. Antioxid Redox Signal 2011; 15:691-718. [PMID: 20973619 PMCID: PMC3125545 DOI: 10.1089/ars.2010.3470] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5a1, ALDH5A1; E.C. 1.2.1.24; OMIM 610045, 271980) deficiency is a rare heritable disorder that disrupts the metabolism of the inhibitory neurotransmitter 4-aminobutyric acid (GABA). Identified in conjunction with increased urinary excretion of the GABA analog gamma-hydroxybutyric acid (GHB), numerous patients have been identified worldwide and the autosomal-recessive disorder has been modeled in mice. The phenotype is one of nonprogressive neurological dysfunction in which seizures may be prominently displayed. The murine model is a reasonable phenocopy of the human disorder, yet the severity of the seizure disorder in the mouse exceeds that observed in SSADH-deficient patients. Abnormalities in GABAergic and GHBergic neurotransmission, documented in patients and mice, form a component of disease pathophysiology, although numerous other disturbances (metabolite accumulations, myelin abnormalities, oxidant stress, neurosteroid depletion, altered bioenergetics, etc.) are also likely to be involved in developing the disease phenotype. Most recently, the demonstration of a redox control system in the SSADH protein active site has provided new insights into the regulation of SSADH by the cellular oxidation/reduction potential. The current review summarizes some 30 years of research on this protein and disease, addressing pathological mechanisms in human and mouse at the protein, metabolic, molecular, and whole-animal level.
Collapse
Affiliation(s)
- Kyung-Jin Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Phillip L. Pearl
- Department of Neurology, Children's National Medical Center, Washington, District of Columbia
| | - Kimmo Jensen
- Synaptic Physiology Laboratory, Department of Physiology and Biophysics, Aarhus University, Aarhus, Denmark
- Center for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - O. Carter Snead
- Department of Neurology, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | | | - Cornelis Jakobs
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - K. Michael Gibson
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
11
|
Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase) and accumulation of gamma-hydroxybutyrate associated with its deficiency. Hum Genomics 2009; 3:106-20. [PMID: 19164088 PMCID: PMC2657722 DOI: 10.1186/1479-7364-3-2-106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5A1 [ALDH5A1]; locus 6p22) occupies a central position in central nervous system (CNS) neurotransmitter metabolism as one of two enzymes necessary for γ-aminobutyric acid (GABA) recycling from the synaptic cleft. Its importance is highlighted by the neurometabolic disease associated with its inherited deficiency in humans, as well as the severe epileptic phenotype observed in Aldh5a1-/- knockout mice. Expanding evidence now suggests, however, that even subtle decreases in human SSADH activity, associated with rare and common single nucleotide polymorphisms, may produce subclinical pathological effects. SSADH, in conjunction with aldo-keto reductase 7A2 (AKR7A2), represent two neural enzymes responsible for further catabolism of succinic semialdehyde, producing either succinate (SSADH) or γ-hydroxybutyrate (GHB; AKR7A2). A GABA analogue, GHB is a short-chain fatty alcohol with unusual properties in the CNS and a long pharmacological history. Moreover, SSADH occupies a further role in the CNS as the enzyme responsible for further metabolism of the lipid peroxidation aldehyde 4-hydroxy-2-nonenal (4-HNE), an intermediate known to induce oxidant stress. Accordingly, subtle decreases in SSADH activity may have the capacity to lead to regional accumulation of neurotoxic intermediates (GHB, 4-HNE). Polymorphisms in SSADH gene structure may also associate with quantitative traits, including intelligence quotient and life expectancy. Further population-based studies of human SSADH activity promise to reveal additional properties of its function and additional roles in CNS tissue.
Collapse
|
12
|
Abstract
Photic stimulation is part of a typical EEG in most countries, especially to check on the photoparoxysmal response (PPR). Interest in this response was enhanced in 1997 when hundreds of Japanese children had attacks while viewing a TV cartoon called "Pokemon." The overall prevalence of the PPR among patients requiring an EEG is approximately 0.8%, but 1.7% in children and 8.87% in patients with epilepsy, more often in Caucasians and females. Autosomal dominant inheritance is indicated, and this response is seen especially at the wavelength of 700 nm or at the flicker frequency of 15-18 Hz. The PPR extending beyond the stimulus carries no increased risk of seizures. Prognosis is generally good, especially after 20 years of age. Attention to PPR has been increased with the advent of video games, and the evoked seizures from these games are likely a manifestation of photosensitive epilepsy. Drug therapy has emphasized valproic acid, but Levetiracetam has also been successful in eliminating the PPR.
Collapse
Affiliation(s)
- John R Hughes
- Department of Neurology, University of Illinois, Medical Center at Chicago, Illinois 60612, USA.
| |
Collapse
|
13
|
Sedel F, Gourfinkel-An I, Lyon-Caen O, Baulac M, Saudubray JM, Navarro V. Epilepsy and inborn errors of metabolism in adults: a diagnostic approach. J Inherit Metab Dis 2007; 30:846-54. [PMID: 17957491 DOI: 10.1007/s10545-007-0723-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/18/2007] [Accepted: 09/19/2007] [Indexed: 11/24/2022]
Abstract
Inborn errors of metabolism (IEMs) represent poorly known causes of epilepsy in adulthood. Although rare, these are important to recognize for several reasons: some IEMs respond to specific treatments, some antiepileptic drugs interfering with metabolic pathways may worsen the clinical condition, and specific genetic counselling can be provided. We review IEMs potentially revealed by epilepsy that can be encountered in an adult neurology department. We distinguished progressive myoclonic epilepsies (observed in some lysosomal storage diseases, respiratory chain disorders and Lafora disease), from other forms of epilepsies (observed in disorders of intermediary metabolism, including porphyrias, creatine metabolism defects, glucose transporter (GLUT-1) deficiency, Wilson disease or succinic semialdehyde dehydrogenase deficiency). We propose a diagnostic approach and point out clinical, radiological and electrophysiological features that suggest an IEM in an epileptic patient.
Collapse
Affiliation(s)
- F Sedel
- Federation of Nervous System Diseases, Reference Center for Lysosomal Diseases, The Salpêtrière Hospital, Pierre et Marie Curie University, Paris, France.
| | | | | | | | | | | |
Collapse
|
14
|
Hempelmann A, Kumar S, Muralitharan S, Sander T. Myofibrillogenesis regulator 1 gene (MR-1) mutation in an Omani family with paroxysmal nonkinesigenic dyskinesia. Neurosci Lett 2006; 402:118-20. [PMID: 16632198 DOI: 10.1016/j.neulet.2006.03.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 03/20/2006] [Accepted: 03/22/2006] [Indexed: 11/15/2022]
Abstract
Two recurrent missense mutations (c.20C>T: A7V; c.26C>T: A9V) in the gene encoding the myofibrillogenesis regulator 1 (MR-1) have been shown to cause autosomal dominant paroxysmal nonkinesigenic dyskinesia (PNKD) in 13 families of primarily European ancestry. Here we report an Omani PNKD family with seven affected family members and autosomal dominant inheritance. Our linkage analysis provided consistent positional evidence that the MR-1 gene could be the responsible disease gene. Sequence analysis identified a MR-1 missense mutation (c.20C>T; A7V) in the affected family members, whereas it was not present in five unaffected family members and 129 population controls. Taking into account that previous haplotype analyses did not reveal evidence for common founders among several PNKD families, our present findings strengthen three implications: (1) autosomal dominant PNKD seems to be a homogenous disorder, for which the MR-1 gene is the major disease gene; (2) mainly two recurrent MR-1 missense mutations (57% V7, 43% V9) account for the genetic variance of familial PNKD; (3) it supports current evidence that some of the recurrent MR-1 mutations may have arisen independently by de novo mutation at functionally convergent key sites of the brain-specific MR-1L isoform.
Collapse
Affiliation(s)
- Anne Hempelmann
- Gene Mapping Center, Max-Delbrück-Center for Molecular Medicine, Department of Neurology, Charité University Medicine, Berlin, Germany, and Department of Neurology, The Royal Hospital, Muscat, Oman
| | | | | | | |
Collapse
|