1
|
Role of the Intermediate Filament Protein Peripherin in Health and Disease. Int J Mol Sci 2022; 23:ijms232315416. [PMID: 36499746 PMCID: PMC9740141 DOI: 10.3390/ijms232315416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Intermediate filaments are the most heterogeneous class among cytoskeletal elements. While some of them have been well-characterized, little is known about peripherin. Peripherin is a class III intermediate filament protein with a specific expression in the peripheral nervous system. Epigenetic modifications are involved in this cell-type-specific expression. Peripherin has important roles in neurite outgrowth and stability, axonal transport, and axonal myelination. Moreover, peripherin interacts with proteins involved in vesicular trafficking, signal transduction, DNA/RNA processing, protein folding, and mitochondrial metabolism, suggesting a role in all these processes. This review collects information regarding peripherin gene regulation, post-translational modifications, and functions and its involvement in the onset of a number of diseases.
Collapse
|
2
|
Regulation of aldose reductase activity by tubulin and phenolic acid derivates. Arch Biochem Biophys 2018; 654:19-26. [DOI: 10.1016/j.abb.2018.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022]
|
3
|
Stykel MG, Humphries K, Kirby MP, Czaniecki C, Wang T, Ryan T, Bamm V, Ryan SD. Nitration of microtubules blocks axonal mitochondrial transport in a human pluripotent stem cell model of Parkinson's disease. FASEB J 2018; 32:5350-5364. [PMID: 29688812 DOI: 10.1096/fj.201700759rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuronal loss in Parkinson's disease (PD) is associated with aberrant mitochondrial function in dopaminergic (DA) neurons of the substantia nigra pars compacta. An association has been reported between PD onset and exposure to mitochondrial toxins, including the agrochemicals paraquat (PQ), maneb (MB), and rotenone (Rot). Here, with the use of a patient-derived stem cell model of PD, allowing comparison of DA neurons harboring a mutation in the α-synuclein (α-syn) gene ( SNCA-A53T) against isogenic, mutation-corrected controls, we describe a novel mechanism whereby NO, generated from SNCA-A53T mutant neurons exposed to Rot or PQ/MB, inhibits anterograde mitochondrial transport through nitration of α-tubulin (α-Tub). Nitration of α-Tub inhibited the association of both α-syn and the mitochondrial motor protein kinesin 5B with the microtubules, arresting anterograde transport. This was, in part, a result of nitration of α-Tub in the C-terminal domain. These effects were rescued by inhibiting NO synthesis with the NOS inhibitor Nω-nitro-L-arginine methyl ester. Collectively, our results are the first to demonstrate a gene by environment interaction in PD, whereby agrochemical exposure selectively triggers a deficit in mitochondrial transport by nitrating the microtubules in neurons harboring the SNCA-A53T mutation.-Stykel, M. G., Humphries, K., Kirby, M. P., Czaniecki, C., Wang, T., Ryan, T., Bamm, V., Ryan, S. D. Nitration of microtubules blocks axonal mitochondrial transport in a human pluripotent stem cell model of Parkinson's disease.
Collapse
Affiliation(s)
- Morgan G Stykel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kayla Humphries
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Mathew P Kirby
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Czaniecki
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Tinya Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Tammy Ryan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Vladimir Bamm
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, California, USA
| |
Collapse
|
4
|
Adav SS, Sze SK. Insight of brain degenerative protein modifications in the pathology of neurodegeneration and dementia by proteomic profiling. Mol Brain 2016; 9:92. [PMID: 27809929 PMCID: PMC5094070 DOI: 10.1186/s13041-016-0272-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/16/2016] [Indexed: 02/06/2023] Open
Abstract
Dementia is a syndrome associated with a wide range of clinical features including progressive cognitive decline and patient inability to self-care. Due to rapidly increasing prevalence in aging society, dementia now confers a major economic, social, and healthcare burden throughout the world, and has therefore been identified as a public health priority by the World Health Organization. Previous studies have established dementia as a 'proteinopathy' caused by detrimental changes in brain protein structure and function that promote misfolding, aggregation, and deposition as insoluble amyloid plaques. Despite clear evidence that pathological cognitive decline is associated with degenerative protein modifications (DPMs) arising from spontaneous chemical modifications to amino acid side chains, the molecular mechanisms that promote brain DPMs formation remain poorly understood. However, the technical challenges associated with DPM analysis have recently become tractable due to powerful new proteomic techniques that facilitate detailed analysis of brain tissue damage over time. Recent studies have identified that neurodegenerative diseases are associated with the dysregulation of critical repair enzymes, as well as the misfolding, aggregation and accumulation of modified brain proteins. Future studies will further elucidate the mechanisms underlying dementia pathogenesis via the quantitative profiling of the human brain proteome and associated DPMs in distinct phases and subtypes of disease. This review summarizes recent developments in quantitative proteomic technologies, describes how these techniques have been applied to the study of dementia-linked changes in brain protein structure and function, and briefly outlines how these findings might be translated into novel clinical applications for dementia patients. In this review, only spontaneous protein modifications such as deamidation, oxidation, nitration glycation and carbamylation are reviewed and discussed.
Collapse
Affiliation(s)
- Sunil S. Adav
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Siu Kwan Sze
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| |
Collapse
|
5
|
Fukui K. Reactive oxygen species induce neurite degeneration before induction of cell death. J Clin Biochem Nutr 2016; 59:155-159. [PMID: 27895381 PMCID: PMC5110939 DOI: 10.3164/jcbn.16-34] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/25/2016] [Indexed: 01/04/2023] Open
Abstract
Reactive oxygen species (ROS) induce neuronal cell death in a time- and concentration-dependent manner. Treatment of cultured cells with a low concentration of hydrogen peroxide induces neurite degeneration, but not cell death. Neurites (axons and dendrites) are vulnerable to ROS. Neurite degeneration (shrinkage, accumulation, and fragmentation) has been found in neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. However, the mechanism of ROS-related neurite degeneration is not fully understood. Many studies have demonstrated the relationship between mitochondrial dysfunction and microtubule destabilization. These dysfunctions are deeply related to changes in calcium homeostasis and ROS production in neurites. Treatment with antioxidant substances, such as vitamin E, prevents neurite degeneration in cultured cells. This review describes the possibility that ROS induces neurite degeneration before the induction of cell death.
Collapse
Affiliation(s)
- Koji Fukui
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of Systems Engineering and Sciences, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| |
Collapse
|
6
|
Hu J, Tian L, Prabhakaran MP, Ding X, Ramakrishna S. Fabrication of Nerve Growth Factor Encapsulated Aligned Poly(ε-Caprolactone) Nanofibers and Their Assessment as a Potential Neural Tissue Engineering Scaffold. Polymers (Basel) 2016; 8:E54. [PMID: 30979150 PMCID: PMC6432581 DOI: 10.3390/polym8020054] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/06/2016] [Accepted: 02/16/2016] [Indexed: 01/31/2023] Open
Abstract
Peripheral nerve injury is a serious clinical problem to be solved. There has been no breakthrough so far and neural tissue engineering offers a promising approach to promote the regeneration of peripheral neural injuries. In this study, emulsion electrospinning technique was introduced as a flexible and promising technique for the fabrication of random (R) and aligned (A) Poly(ε-caprolactone) (PCL)-Nerve Growth Factor (NGF)&Bovine Serum Albumin (BSA) nanofibrous scaffolds [(R/A)-PCL-NGF&BSA], where NGF and BSA were encapsulated in the core while PCL form the shell. Random and aligned pure PCL, PCL-BSA, and PCL-NGF nanofibers were also produced for comparison. The scaffolds were characterized by Field Emission Scanning Electron Microscopy (FESEM) and water contact angle test. Release study showed that, with the addition of stabilizer BSA, a sustained release of NGF from emulsion electrospun PCL nanofibers was observed over 28 days. [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] assay revealed that (R/A)-PCL-NGF and (R/A)-PCL-NGF&BSA scaffolds favored cell growth and showed no cytotoxicity to PC12 cells. Laser scanning confocal microscope images exhibited that the A-PCL-NGF&BSA scaffold increased the length of neurites and directed neurites extension along the fiber axis, indicating that the A-PCL-NGF&BSA scaffold has a potential for guiding nerve tissue growth and promoting nerve regeneration.
Collapse
Affiliation(s)
- Jue Hu
- College of Textiles, Donghua University, Shanghai 201620, China.
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore.
| | - Lingling Tian
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore.
| | - Molamma P Prabhakaran
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore.
| | - Xin Ding
- College of Textiles, Donghua University, Shanghai 201620, China.
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore.
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Parker AL, Kavallaris M, McCarroll JA. Microtubules and their role in cellular stress in cancer. Front Oncol 2014; 4:153. [PMID: 24995158 PMCID: PMC4061531 DOI: 10.3389/fonc.2014.00153] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/03/2014] [Indexed: 01/08/2023] Open
Abstract
Microtubules are highly dynamic structures, which consist of α- and β-tubulin heterodimers, and are involved in cell movement, intracellular trafficking, and mitosis. In the context of cancer, the tubulin family of proteins is recognized as the target of the tubulin-binding chemotherapeutics, which suppress the dynamics of the mitotic spindle to cause mitotic arrest and cell death. Importantly, changes in microtubule stability and the expression of different tubulin isotypes as well as altered post-translational modifications have been reported for a range of cancers. These changes have been correlated with poor prognosis and chemotherapy resistance in solid and hematological cancers. However, the mechanisms underlying these observations have remained poorly understood. Emerging evidence suggests that tubulins and microtubule-associated proteins may play a role in a range of cellular stress responses, thus conferring survival advantage to cancer cells. This review will focus on the importance of the microtubule-protein network in regulating critical cellular processes in response to stress. Understanding the role of microtubules in this context may offer novel therapeutic approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia
| | - Maria Kavallaris
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| | - Joshua A McCarroll
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
8
|
Tamplenizza M, Lenardi C, Maffioli E, Nonnis S, Negri A, Forti S, Sogne E, De Astis S, Matteoli M, Schulte C, Milani P, Tedeschi G. Nitric oxide synthase mediates PC12 differentiation induced by the surface topography of nanostructured TiO2. J Nanobiotechnology 2013; 11:35. [PMID: 24119372 PMCID: PMC3815074 DOI: 10.1186/1477-3155-11-35] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022] Open
Abstract
Background Substrate nanoscale topography influences cell proliferation and differentiation through mechanisms that are at present poorly understood. In particular the molecular mechanism through which cells 'sense’ and adapt to the substrate and activate specific intracellular signals, influencing cells survival and behavior, remains to be clarified. Results To characterize these processes at the molecular level we studied the differentiation of PC12 cells on nanostructured TiO2 films obtained by supersonic cluster beam deposition. Our findings indicate that, in PC12 cells grown without Nerve Growth Factor (NGF), the roughness of nanostructured TiO2 triggers neuritogenesis by activating the expression of nitric oxide synthase (NOS) and the phospho-extracellular signal-regulated kinase 1/2 (pERK1/2) signaling. Differentiation is associated with an increase in protein nitration as observed in PC12 cells grown on flat surfaces in the presence of NGF. We demonstrate that cell differentiation and protein nitration induced by topography are not specific for PC12 cells but can be regarded as generalized effects produced by the substrate on different neuronal-like cell types, as shown by growing the human neuroblastoma SH-SY5Y cell line on nanostructured TiO2. Conclusion Our data provide the evidence that the nitric oxide (NO) signal cascade is involved in the differentiation process induced by nanotopography, adding new information on the mechanism and proteins involved in the neuritogenesis triggered by the surface properties.
Collapse
Affiliation(s)
- Margherita Tamplenizza
- CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milano 20133, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Blume YB, Krasylenko YA, Demchuk OM, Yemets AI. Tubulin tyrosine nitration regulates microtubule organization in plant cells. FRONTIERS IN PLANT SCIENCE 2013; 4:530. [PMID: 24421781 PMCID: PMC3872735 DOI: 10.3389/fpls.2013.00530] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/10/2013] [Indexed: 05/21/2023]
Abstract
During last years, selective tyrosine nitration of plant proteins gains importance as well-recognized pathway of direct nitric oxide (NO) signal transduction. Plant microtubules are one of the intracellular signaling targets for NO, however, the molecular mechanisms of NO signal transduction with the involvement of cytoskeletal proteins remain to be elucidated. Since biochemical evidence of plant α-tubulin tyrosine nitration has been obtained recently, potential role of this posttranslational modification in regulation of microtubules organization in plant cell is estimated in current paper. It was shown that 3-nitrotyrosine (3-NO2-Tyr) induced partially reversible Arabidopsis primary root growth inhibition, alterations of root hairs morphology and organization of microtubules in root cells. It was also revealed that 3-NO2-Tyr intensively decorates such highly dynamic microtubular arrays as preprophase bands, mitotic spindles and phragmoplasts of Nicotiana tabacum Bright Yellow-2 (BY-2) cells under physiological conditions. Moreover, 3D models of the mitotic kinesin-8 complexes with the tail of detyrosinated, tyrosinated and tyrosine nitrated α-tubulin (on C-terminal Tyr 450 residue) from Arabidopsis were reconstructed in silico to investigate the potential influence of tubulin nitrotyrosination on the molecular dynamics of α-tubulin and kinesin-8 interaction. Generally, presented data suggest that plant α-tubulin tyrosine nitration can be considered as its common posttranslational modification, the direct mechanism of NO signal transduction with the participation of microtubules under physiological conditions and one of the hallmarks of the increased microtubule dynamics.
Collapse
Affiliation(s)
- Yaroslav B. Blume
- *Correspondence: Yaroslav B. Blume, Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osipovskogo str., 2, Kyiv 04123, Ukraine e-mail:
| | | | | | | |
Collapse
|
10
|
Mongin AA, Dohare P, Jourd'heuil D. Selective vulnerability of synaptic signaling and metabolism to nitrosative stress. Antioxid Redox Signal 2012; 17:992-1012. [PMID: 22339371 PMCID: PMC3411350 DOI: 10.1089/ars.2012.4559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO) plays diverse physiological roles in the central nervous system, where it modulates neuronal communication, regulates blood flow, and contributes to the innate immune responses. In a number of brain pathologies, the excessive production of NO also leads to the formation of reactive and toxic intermediates generically termed reactive nitrogen species (RNS). RNS cause irreversible or poorly reversible damage to brain cells. RECENT ADVANCES Recent work in the field focused on the ability of NO and RNS to yield protein modifications, including the S-nitrosation of cysteine residues, which, in many instances, impact cellular functions and viability. CRITICAL ISSUES The vast majority of neuropathological studies focus on the loss of cell viability, but nitrosative stress may also strongly impair the functions of neuronal processes: axonal projections and dendritic trees. The functional integrity of axons and dendrites critically depends on local metabolism and effective delivery of metabolic enzymes and organelles. Here, we summarize the existing literature describing the effects of nitrosative stress on the major pathways of energetic metabolism: glycolysis, tricarboxylic acid cycle, and mitochondrial respiration, with the emphasis on modifications of protein thiols. FUTURE DIRECTIONS We propose that axons and dendrites are highly vulnerable to nitrosative stress because of their low glycolytic capacity and high dependence on timely delivery of metabolic enzymes and organelles from the cell body. Thus, supplementation with the end products of glycolysis, pyruvate or lactate, may help preserve metabolism in distal neuronal processes and protect or restore synaptic function in the ailing brain.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, New York 12208, USA.
| | | | | |
Collapse
|
11
|
Wang S, Hu CP, Yuan Q, Zhang WF, Zhou Z, Nie SD, Jiang JL, Li YJ. Dimethylarginine dimethylaminohydrolase 1 regulates nerve growth factor-promoted differentiation of PC12 cells in a nitric oxide-dependent but asymmetric dimethylargenine-independent manner. J Neurosci Res 2012; 90:1209-17. [DOI: 10.1002/jnr.23009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 11/05/2011] [Accepted: 11/18/2011] [Indexed: 11/10/2022]
|
12
|
Yemets AI, Krasylenko YA, Lytvyn DI, Sheremet YA, Blume YB. Nitric oxide signalling via cytoskeleton in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:545-54. [PMID: 21893251 DOI: 10.1016/j.plantsci.2011.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/25/2011] [Accepted: 04/27/2011] [Indexed: 05/19/2023]
Abstract
Nitric oxide (NO) in plant cell mediates processes of growth and development starting from seed germination to pollination, as well as biotic and abiotic stress tolerance. However, proper understanding of the molecular mechanisms of NO signalling in plants has just begun to emerge. Accumulated evidence suggests that in eukaryotic cells NO regulates functions of proteins by their post-translational modifications, namely tyrosine nitration and S-nitrosylation. Among the candidates for NO-downstream effectors are cytoskeletal proteins because of their involvement in many processes regulated by NO. This review discusses new insights in plant NO signalling focused mainly on the involvement of cytoskeleton components into NO-cascades. Herein, examples of NO-related post-translational modifications of cytoskeletal proteins, and also indirect NO impact, are discussed. Special attention is paid to plant α-tubulin tyrosine nitration as an emerging topic in plant NO research.
Collapse
Affiliation(s)
- Alla I Yemets
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osipovskogo Str., 2a, Kyiv 04123, Ukraine.
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Reyes JF, Fu Y, Vana L, Kanaan NM, Binder LI. Tyrosine nitration within the proline-rich region of Tau in Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2275-85. [PMID: 21514440 DOI: 10.1016/j.ajpath.2011.01.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/14/2010] [Accepted: 01/12/2011] [Indexed: 12/24/2022]
Abstract
A substantial body of evidence suggests that nitrative injury contributes to neurodegeneration in Alzheimer's disease (AD) and other neurodegenerative disorders. Previously, we showed in vitro that within the tau protein the N-terminal tyrosine residues (Y18 and Y29) are more susceptible to nitrative modifications than other tyrosine sites (Y197 and Y394). Using site-specific antibodies to nitrated tau at Y18 and Y29, we identified tau nitrated in both glial (Y18) and neuronal (Y29) tau pathologies. In this study, we report the characterization of two novel monoclonal antibodies, Tau-nY197 and Tau-nY394, recognizing tau nitrated at Y197 and Y394, respectively. By Western blot analysis, Tau-nY197 labeled soluble tau and insoluble paired helical filament proteins (PHF-tau) nitrated at Y197 from control and AD brain samples. Tau-nY394 failed to label soluble tau isolated from control or severe AD samples, but labeled insoluble PHF-tau to a limited extent. Immunohistochemical analysis using Tau-nY197 revealed the hallmark tau pathology associated with AD; Tau-nY394 did not detect any pathological lesions characteristic of the disorder. These data suggest that a subset of the hallmark pathological inclusions of AD contain tau nitrated at Y197. However, nitration at Y197 was also identified in soluble tau from all control samples, including those at Braak stage 0, suggesting that nitration at this site in the proline-rich region of tau may have normal biological functions in the human brain.
Collapse
Affiliation(s)
- Juan F Reyes
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | | | | |
Collapse
|
15
|
Martínez MC, Andriantsitohaina R. Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal 2009; 11:669-702. [PMID: 19014277 DOI: 10.1089/ars.2007.1993] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reactive nitrogen species (RNS) are various nitric oxide-derived compounds, including nitroxyl anion, nitrosonium cation, higher oxides of nitrogen, S-nitrosothiols, and dinitrosyl iron complexes. RNS have been recognized as playing a crucial role in the physiologic regulation of many, if not all, living cells, such as smooth muscle cells, cardiomyocytes, platelets, and nervous and juxtaglomerular cells. They possess pleiotropic properties on cellular targets after both posttranslational modifications and interactions with reactive oxygen species. Elevated levels of RNS have been implicated in cell injury and death by inducing nitrosative stress. The aim of this comprehensive review is to address the mechanisms of formation and removal of RNS, highlighting their potential cellular targets: lipids, DNA, and proteins. The specific importance of RNS and their paradoxic effects, depending on their local concentration under physiologic conditions, is underscored. An increasing number of compounds that modulate RNS processing or targets are being identified. Such compounds are now undergoing preclinical and clinical evaluations in the treatment of pathologies associated with RNS-induced cellular damage. Future research should help to elucidate the involvement of RNS in the therapeutic effect of drugs used to treat neurodegenerative, cardiovascular, metabolic, and inflammatory diseases and cancer.
Collapse
Affiliation(s)
- M Carmen Martínez
- INSERM, U771, CNRS UMR, 6214, and Université d' Angers, Angers, France
| | | |
Collapse
|
16
|
Nonnis S, Cappelletti G, Taverna F, Ronchi C, Ronchi S, Negri A, Grassi E, Tedeschi G. Tau is Endogenously Nitrated in Mouse Brain: Identification of a Tyrosine Residue Modified In vivo by NO. Neurochem Res 2007; 33:518-25. [PMID: 17768677 DOI: 10.1007/s11064-007-9467-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 07/31/2007] [Indexed: 12/29/2022]
Abstract
Nitration of tau protein is normally linked to neurodegeneration but, until now, no comprehensive information is available regarding tau nitration in healthy subjects. It has been previously reported that in differentiated PC12 cells, tau co-immunoprecipitated with alpha-tubulin is nitrated at tyrosine residues and that this post-translation modification doesn't impair the association of tau with the cytoskeleton. The present paper is focused on the identification of tyrosine residues endogenously modified in tau from PC12 cells and reports for the first time that tau is also nitrated in vivo in normal mouse brain and that one tyrosine is endogenously modified.
Collapse
Affiliation(s)
- Simona Nonnis
- DIPAV - Section of Biochemistry, University of Milano, Via Celoria 10, Milano 20100, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tedeschi G, Cappelletti G, Nonnis S, Taverna F, Negri A, Ronchi C, Ronchi S. Tyrosine nitration is a novel post-translational modification occurring on the neural intermediate filament protein peripherin. Neurochem Res 2007; 32:433-41. [PMID: 17268851 DOI: 10.1007/s11064-006-9244-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 11/29/2006] [Indexed: 02/07/2023]
Abstract
The biological implication of protein tyrosine nitration in signaling pathways triggered by nitric oxide is recently emerging. Here we report for the first time that nitrotyrosination occurs in the neural intermediate filament protein peripherin. In neuron-like PC12 cells, nitrated peripherin is associated with the cytoskeleton fraction, its level increases during the progression of NGF-induced differentiation and the nitrated protein remains closely associated with stable microtubules. Tyr 17 and Tyr 376 were identified by MALDI-TOF analyses as two specific residues endogenously nitrated. Finally, peripherin nitration is not restricted to PC12 cells but it is also present in vivo in rat brain.
Collapse
Affiliation(s)
- Gabriella Tedeschi
- Section of Biochemistry, University of Milano, Via Celoria 10, 20100 Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|