1
|
Vajagathali M, Ramakrishnan V. Genetic predisposition of BDNF (rs6265) gene is susceptible to Schizophrenia: A prospective study and updated meta-analysis. Neurologia 2024; 39:361-371. [PMID: 38616064 DOI: 10.1016/j.nrleng.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/28/2021] [Indexed: 04/16/2024] Open
Abstract
INTRODUCTION Genetic polymorphism in the BDNF gene has been found to cause neuronal alterations and has been identified as a causal factor for many neuropsychiatric disorders. Therefore, various neurological case-control studies and meta-analyses have been conducted to find the possible link between BDNF and susceptibility to schizophrenia. METHOD This meta-analysis gathered data from 25 case-control studies including a total of 8384 patients with schizophrenia and 8821 controls in order to identify the relationship between the rs6265 single nucleotide polymorphism and the disease, evaluating the combined odds ratio and 95% confidence intervals under 5 different genetic models. Validation followed the "Leave one out" method, and we used the Egger test and Begg's funnel plot to identify publication bias. RESULTS Research into the rs6265 (G/A) polymorphism revealed a non-significant association with schizophrenia in all 5 genetic models; in the subgroup analysis, no association was found between white and Asian populations, with a p value>.05. CONCLUSIONS Overall, the updated meta-analysis revealed that rs6265 exonic polymorphisms do not increase susceptibility to this disease. However, to better understand the pathogenesis of the disease, there is a need for further case-control studies into the BDNF polymorphism including larger sample sizes and different ethnic groups.
Collapse
Affiliation(s)
- M Vajagathali
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamilnadu, India
| | - V Ramakrishnan
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamilnadu, India.
| |
Collapse
|
2
|
Morozova A, Ushakova V, Pavlova O, Bairamova S, Andryshenko N, Ochneva A, Abramova O, Zorkina Y, Spektor VA, Gadisov T, Ukhov A, Zubkov E, Solovieva K, Alexeeva P, Khobta E, Nebogina K, Kozlov A, Klimenko T, Gurina O, Shport S, Kostuyk G, Chekhonin V, Pavlov K. BDNF, DRD4, and HTR2A Gene Allele Frequency Distribution and Association with Mental Illnesses in the European Part of Russia. Genes (Basel) 2024; 15:240. [PMID: 38397229 PMCID: PMC10887670 DOI: 10.3390/genes15020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The prevalence of mental disorders and how they are diagnosed represent some of the major problems in psychiatry. Modern genetic tools offer the potential to reduce the complications concerning diagnosis. However, the vast genetic diversity in the world population requires a closer investigation of any selected populations. In the current research, four polymorphisms, namely rs6265 in BDNF, rs10835210 in BDNF, rs6313 in HTR2A, and rs1800955 in DRD4, were analyzed in a case-control study of 2393 individuals (1639 patients with mental disorders (F20-F29, F30-F48) and 754 controls) from the European part of Russia using the TaqMan SNP genotyping method. Significant associations between rs6265 BDNF and rs1800955 DRD4 and mental impairments were detected when comparing the general group of patients with mental disorders (without separation into diagnoses) to the control group. Associations of rs6265 in BDNF, rs1800955 in DRD4, and rs6313 in HTR2A with schizophrenia in patients from the schizophrenia group separately compared to the control group were also found. The obtained results can extend the concept of a genetic basis for mental disorders in the Russian population and provide a basis for the future improvement in psychiatric diagnostics.
Collapse
Affiliation(s)
- Anna Morozova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valeriya Ushakova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Neurobiology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Pavlova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Sakeena Bairamova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Nika Andryshenko
- Department of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China;
| | - Aleksandra Ochneva
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Olga Abramova
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Yana Zorkina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valery A. Spektor
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Timur Gadisov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Andrey Ukhov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Eugene Zubkov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Kristina Solovieva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Polina Alexeeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Elena Khobta
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Kira Nebogina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Alexander Kozlov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Tatyana Klimenko
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Olga Gurina
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - Svetlana Shport
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
| | - George Kostuyk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Vladimir Chekhonin
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Konstantin Pavlov
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia; (V.U.); (O.P.); (S.B.); (A.O.); (O.A.); (Y.Z.); (T.G.); (A.U.); (E.Z.); (O.G.); (K.P.)
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| |
Collapse
|
3
|
Ricci V, de Berardis D, Martinotti G, Maina G. Neurotrophic Factors in Cannabis-induced Psychosis: An Update. Curr Top Med Chem 2024; 24:1757-1772. [PMID: 37644743 DOI: 10.2174/1568026623666230829152150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Cannabis is the most widely used illicit substance. Numerous scientific evidence confirm the strong association between cannabis and psychosis. Exposure to cannabis can induce the development of psychosis and schizophrenia in vulnerable individuals. However, the neurobiological processes underlying this relationship are unknown. Neurotrophins are a class of proteins that serve as survival factors for central nervous system (CNS) neurons. In particular, Nerve Growth Factor (NGF) plays an important role in the survival and function of cholinergic neurons while Brain Derived Neurotrophic Factor (BDNF) is involved in synaptic plasticity and the maintenance of midbrain dopaminergic and cholinergic neurons. Glial Cell Derived Neurotrophic Factor (GDNF) promotes the survival of midbrain dopaminergic neurons and Neuregulin 1 (NrG- 1) contributes to glutamatergic signals regulating the N-methyl-D-aspartate (NMDA). They have a remarkable influence on the neurons involved in the Δ-9-THC (tethra-hydro-cannabinol) action, such as dopaminergic and glutamatergic neurons, and can play dual roles: first, in neuronal survival and death, and, second, in activity-dependent plasticity. METHODS In this brief update, reviewing in a narrative way the relevant literature, we will focus on the effects of cannabis on this class of proteins, which may be implicated, at least in part, in the mechanism of the psychostimulant-induced neurotoxicity and psychosis. CONCLUSION Since altered levels of neurotrophins may participate in the pathogenesis of psychotic disorders which are common in drug users, one possible hypothesis is that repeated cannabis exposure can cause psychosis by interfering with neurotrophins synthesis and utilization by CNS neurons.
Collapse
Affiliation(s)
- Valerio Ricci
- Psychiatric Service for Diagnosis and Treatment, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Turin, Italy
| | - Domenico de Berardis
- NHS, Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, Hospital "G. Mazzini", ASL 4, 64100, Teramo, Italy
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
| | - Giuseppe Maina
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Italy
| |
Collapse
|
4
|
Bednarova A, Habalova V, Krivosova M, Marcatili M, Tkac I. Association Study of BDNF, SLC6A4, and FTO Genetic Variants with Schizophrenia Spectrum Disorders. J Pers Med 2023; 13:jpm13040658. [PMID: 37109044 PMCID: PMC10141144 DOI: 10.3390/jpm13040658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia spectrum disorders (patients with a diagnosis of schizophrenia, schizotypal, and delusional disorders: F20-F29 according to International Classification of Diseases 10th revision (ICD-10)) are considered highly heritable heterogeneous psychiatric conditions. Their pathophysiology is multifactorial with involved dysregulated serotonergic neurotransmission and synaptic plasticity. The present study aimed to evaluate the association of SLC6A4 (5-HTTLPR), FTO (rs9939609), and BDNF (rs6265, rs962369) polymorphisms with schizophrenia spectrum disorders in Slovak patients. We analyzed the genotypes of 150 patients with schizophrenia, schizotypal, and delusional disorders and compared them with genotypes from 178 healthy volunteers. We have found a marginally protective effect of LS + SS genotypes of 5-HTTLPR variant of the serotonin transporter SLC6A4 gene against the development of schizophrenia spectrum disorders, but the result failed to remain significant after Bonferroni correction. Similarly, we have not proven any significant association between other selected genetic variants and schizophrenia and related disorders. Studies including a higher number of subjects are warranted to reliably confirm the presence or absence of the studied associations.
Collapse
Affiliation(s)
- Aneta Bednarova
- 2nd Department of Psychiatry, Faculty of Medicine, Pavol Jozef Safarik University, Louis Pasteur University Hospital, 041 90 Kosice, Slovakia
| | - Viera Habalova
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Safarik University, 040 11 Kosice, Slovakia
| | - Michaela Krivosova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Matteo Marcatili
- Department of Mental Health and Addiction, Fondazione IRCCS San Gerardo dei Tintori, 209 00 Monza, Italy
| | - Ivan Tkac
- 4th Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University, Louis Pasteur University Hospital, 041 90 Kosice, Slovakia
| |
Collapse
|
5
|
Yamaguchi R, Matsudaira I, Takeuchi H, Imanishi T, Kimura R, Tomita H, Kawashima R, Taki Y. RELN rs7341475 associates with brain structure in japanese healthy females. Neuroscience 2022; 494:38-50. [DOI: 10.1016/j.neuroscience.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/06/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
|
6
|
Vajagathali M, Ramakrishnan V. Genetic predisposition of BDNF (rs6265) gene is susceptible to Schizophrenia: A prospective study and updated meta-analysis. Neurologia 2022. [DOI: 10.1016/j.nrl.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Bellia F, Vismara M, Annunzi E, Cifani C, Benatti B, Dell'Osso B, D'Addario C. Genetic and epigenetic architecture of Obsessive-Compulsive Disorder: In search of possible diagnostic and prognostic biomarkers. J Psychiatr Res 2021; 137:554-571. [PMID: 33213890 DOI: 10.1016/j.jpsychires.2020.10.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Obsessive-Compulsive Disorder (OCD) is a prevalent and severe clinical condition whose hallmarks are excessive, unwanted thoughts (obsessions) and repetitive behaviors (compulsions). The onset of symptoms generally occurs during pre-adult life and typically affects subjects in different aspects of their life's, compromising social and professional relationships. Although robust evidence suggests a genetic component in the etiopathogenesis of OCD, the causes of the disorder are still not completely understood. It is thus of relevance to take into account how genes interact with environmental risk factors, thought to be mediated by epigenetic mechanisms. We here provide an overview of genetic and epigenetic mechanisms of OCD, focusing on the modulation of key central nervous system genes, in the attempt to suggest possible disease biomarkers.
Collapse
Affiliation(s)
- Fabio Bellia
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | - Matteo Vismara
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milano, Italy
| | - Eugenia Annunzi
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Gabriele D'Annunzio University, Chieti, Italy
| | - Carlo Cifani
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Beatrice Benatti
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milano, Italy; CRC "Aldo Ravelli", University of Milan, Milano, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milano, Italy; CRC "Aldo Ravelli", University of Milan, Milano, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA.
| | - Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Huang Z, Wu D, Qu X, Li M, Zou J, Tan S. BDNF and nicotine dependence: associations and potential mechanisms. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0044/revneuro-2020-0044.xml. [PMID: 32887210 DOI: 10.1515/revneuro-2020-0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/18/2020] [Indexed: 12/30/2022]
Abstract
Smoking is the leading preventable cause of death worldwide and tobacco addiction has become a serious public health problem. Nicotine is the main addictive component of tobacco, and the majority of people that smoke regularly develop nicotine dependence. Nicotine addiction is deemed to be a chronic mental disorder. Although it is well known that nicotine binds to the nicotinic acetylcholine receptors (nAChRs) and activates the mesolimbic dopaminergic system (MDS) to generate the pleasant and rewarding effects, the molecular mechanisms of nicotine addiction are not fully understood. Brain-derived neurotrophic factor (BDNF) is the most prevalent growth factor in the brain, which regulates neuron survival, differentiation, and synaptic plasticity, mainly through binding to the high affinity receptor tyrosine kinase receptor B (TrkB). BDNF gene polymorphisms are associated with nicotine dependence and blood BDNF levels are altered in smokers. In this review, we discussed the effects of nicotine on BDNF expression in the brain and summarized the underlying signaling pathways, which further indicated BDNF as a key regulator in nicotine dependence. Further studies that aim to understand the neurobiological mechanism of BDNF in nicotine addcition would provide a valuable reference for quitting smoking and developing the treatment of other addictive substances.
Collapse
Affiliation(s)
- Zeyi Huang
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| | - Daichao Wu
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| | - Xilin Qu
- Grade 2017 of Clinical Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang421001,Hunan, China
| | - Meixiang Li
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| | - Ju Zou
- Department of Parasitology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang421001,Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| |
Collapse
|
9
|
SNPs associated with Schizophrenia: Evidence from Iranian patients. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Physical Exercise Affects Adipose Tissue Profile and Prevents Arterial Thrombosis in BDNF Val66Met Mice. Cells 2019; 8:cells8080875. [PMID: 31405230 PMCID: PMC6721716 DOI: 10.3390/cells8080875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 01/04/2023] Open
Abstract
Adipose tissue accumulation is an independent and modifiable risk factor for cardiovascular disease (CVD). The recent CVD European Guidelines strongly recommend regular physical exercise (PE) as a management strategy for prevention and treatment of CVD associated with metabolic disorders and obesity. Although mutations as well as common genetic variants, including the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, are associated with increased body weight, eating and neuropsychiatric disorders, and myocardial infarction, the effect of this polymorphism on adipose tissue accumulation and regulation as well as its relation to obesity/thrombosis remains to be elucidated. Here, we showed that white adipose tissue (WAT) of humanized knock-in BDNFVal66Met (BDNFMet/Met) mice is characterized by an altered morphology and an enhanced inflammatory profile compared to wild-type BDNFVal/Val. Four weeks of voluntary PE restored the adipocyte size distribution, counteracted the inflammatory profile of adipose tissue, and prevented the prothrombotic phenotype displayed, per se, by BDNFMet/Met mice. C3H10T1/2 cells treated with the Pro-BDNFMet peptide well recapitulated the gene alterations observed in BDNFMet/Met WAT mice. In conclusion, these data indicate the strong impact of lifestyle, in particular of the beneficial effect of PE, on the management of arterial thrombosis and inflammation associated with obesity in relation to the specific BDNF Val66Met mutation.
Collapse
|
11
|
von Wilmsdorff M, Manthey F, Bouvier ML, Staehlin O, Falkai P, Meisenzahl-Lechner E, Schmitt A, Gebicke-Haerter PJ. Effects of haloperidol and clozapine on synapse-related gene expression in specific brain regions of male rats. Eur Arch Psychiatry Clin Neurosci 2018; 268:555-563. [PMID: 29404686 DOI: 10.1007/s00406-018-0872-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/24/2018] [Indexed: 01/22/2023]
Abstract
We investigated the effects of clozapine and haloperidol, drugs that are widely used in the treatment of schizophrenia, on gene expression in six cortical and subcortical brain regions of adult rats. Drug treatments started at postnatal day 85 and continued over a 12-week period. Ten animals received haloperidol (1 mg/kg bodyweight) and ten received clozapine (20 mg/kg bodyweight) orally each day. Ten control rats received no drugs. The ten genes selected for this study did not belong to the dopaminergic or serotoninergic systems, which are typically targeted by the two substances, but coded for proteins of the cytoskeleton and proteins belonging to the synaptic transmitter release machinery. Quantitative real-time PCR was performed in the prelimbic cortex, cingulate gyrus (CG1) and caudate putamen and in the hippocampal cornu ammonis 1 (CA1), cornu ammonis 3 (CA3) and dentate gyrus. Results show distinct patterns of gene expression under the influence of the two drugs, but also distinct gene regulations dependent on the brain regions. Haloperidol-medicated animals showed statistically significant downregulation of SNAP-25 in CA3 (p = 0.0134) and upregulation of STX1A in CA1 (p = 0.0133) compared to controls. Clozapine-treated animals showed significant downregulation of SNAP-25 in CG1 (p = 0.0013). Our results clearly reveal that the drugs' effects are different between brain regions. These effects are possibly indirectly mediated through feedback mechanisms by proteins targeted by the drugs, but direct effects of haloperidol or clozapine on mechanisms of gene expression cannot be excluded.
Collapse
Affiliation(s)
- Martina von Wilmsdorff
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Fabian Manthey
- Department of Psychiatry and Psychotherapy, Alexianer Krefeld GmbH, Krefeld, Germany
| | - Marie-Luise Bouvier
- Laboratory of Brain Morphology, Department of Psychiatry and Psychotherapy, LVR Klinikum, Heinrich-Heine-University, Bergische Landstr.2, 40629, Düsseldorf, Germany.
| | | | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians-University (LMU) Munich, Munich, Germany
| | - Eva Meisenzahl-Lechner
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians-University (LMU) Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Peter J Gebicke-Haerter
- Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
- Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Kim EJ, Kim YK. 196G/A of the Brain-Derived Neurotrophic Factor Gene Polymorphisms Predicts Suicidal Behavior in Schizophrenia Patients. Psychiatry Investig 2018; 15:733-738. [PMID: 29898578 PMCID: PMC6056694 DOI: 10.30773/pi.2018.02.27] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/27/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) has possible neurobiologic impact on etiology of schizophrenia. We hypothesized that the specific allele or the genotype such as two single nucleotide polymorphisms (SNPs) , 196G/A (rs6265), 11757G/C(rs16917204) is associated with schizophrenia or its clinical features. METHODS 241 normal controls and 157 schizophrenia patients are included. The differences in allele or genotype distribution for the patients and normal controls were analyzed. We also analyzed clinical variables among patients. RESULTS We found no significant difference in genotype or allele distributions of two studied SNPs between the patient group and the control group. However, history of suicide attempt was relatively higher in patients with genotype with A allele, compared to patients with genotype G/G for 196G/A (p-value=0.045). CONCLUSION Our results suggest that it is possible to use BDNF gene allele and genotype as a predictor for suicide attempt in schizophrenia patients. It can help manage the schizophrenia patients regarding suicidal behavior and furthermore, mortality.
Collapse
Affiliation(s)
- Eun-Jeong Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea
| |
Collapse
|
13
|
Mohammadi A, Rashidi E, Amooeian VG. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res 2018; 265:25-38. [PMID: 29680514 DOI: 10.1016/j.psychres.2018.04.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 12/29/2022]
Abstract
Over the last decade, finding a reliable biomarker for the early detection of schizophrenia (Scz) has been a topic of interest. The main goal of the current review is to provide a comprehensive view of the brain, blood, cerebrospinal fluid (CSF), and serum biomarkers of Scz disease. Imaging studies have demonstrated that the volumes of the corpus callosum, thalamus, hippocampal formation, subiculum, parahippocampal gyrus, superior temporal gyrus, prefrontal and orbitofrontal cortices, and amygdala-hippocampal complex were reduced in patients diagnosed with Scz. It has been revealed that the levels of interleukin 1β (IL-1β), IL-6, IL-8, and TNF-α were increased in patients with Scz. Decreased mRNA levels of brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), neurotrophin-3 (NT-3), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) genes have also been reported in Scz patients. Genes with known strong relationships with this disease include BDNF, catechol-O-methyltransferase (COMT), regulator of G-protein signaling 4 (RGS4), dystrobrevin-binding protein 1 (DTNBP1), neuregulin 1 (NRG1), Reelin (RELN), Selenium-binding protein 1 (SELENBP1), glutamic acid decarboxylase 67 (GAD 67), and disrupted in schizophrenia 1 (DISC1). The levels of dopamine, tyrosine hydroxylase (TH), serotonin or 5-hydroxytryptamine (5-HT) receptor 1A and B (5-HTR1A and 5-HTR1B), and 5-HT1B were significantly increased in Scz patients, while the levels of gamma-aminobutyric acid (GABA), 5-HT transporter (5-HTT), and 5-HT receptor 2A (5-HTR2A) were decreased. The increased levels of SELENBP1 and Glycogen synthase kinase 3 subunit α (GSK3α) genes in contrast with reduced levels of B-cell translocation gene 1 (BTG1), human leukocyte antigen DRB1 (HLA-DRB1), heterogeneous nuclear ribonucleoprotein A3 (HNRPA3), and serine/arginine-rich splicing factor 1 (SFRS1) genes have also been reported. This review covers various dysregulation of neurotransmitters and also highlights the strengths and weaknesses of studies attempting to identify candidate biomarkers.
Collapse
Affiliation(s)
- Alireza Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ehsan Rashidi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ghasem Amooeian
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Tsai SJ. Critical Issues in BDNF Val66Met Genetic Studies of Neuropsychiatric Disorders. Front Mol Neurosci 2018; 11:156. [PMID: 29867348 PMCID: PMC5962780 DOI: 10.3389/fnmol.2018.00156] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Neurotrophins have been implicated in the pathophysiology of many neuropsychiatric diseases. Brain-derived neurotrophic factor (BDNF) is the most abundant and widely distributed neurotrophin in the brain. Its Val66Met polymorphism (refSNP Cluster Report: rs6265) is a common and functional single-nucleotide polymorphism (SNP) affecting the activity-dependent release of BDNF. BDNF Val66Met transgenic mice have been generated, which may provide further insight into the functional impact of this polymorphism in the brain. Considering the important role of BDNF in brain function, more than 1,100 genetic studies have investigated this polymorphism in the past 15 years. Although these studies have reported some encouraging positive findings initially, most of the findings cannot be replicated in following studies. These inconsistencies in BDNF Val66Met genetic studies may be attributed to many factors such as age, sex, environmental factors, ethnicity, genetic model used for analysis, and gene–gene interaction, which are discussed in this review. We also discuss the results of recent studies that have reported the novel functions of this polymorphism. Because many BDNF polymorphisms and non-genetic factors have been implicated in the complex traits of neuropsychiatric diseases, the conventional genetic association-based method is limited to address these complex interactions. Future studies should apply data mining and machine learning techniques to determine the genetic role of BDNF in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
15
|
Variability and Reliability of Paired-Pulse Depression and Cortical Oscillation Induced by Median Nerve Stimulation. Brain Topogr 2018; 31:780-794. [PMID: 29737438 PMCID: PMC6097743 DOI: 10.1007/s10548-018-0648-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 05/02/2018] [Indexed: 10/31/2022]
Abstract
Paired-pulse depression (PPD) has been widely used to investigate the functional profiles of somatosensory cortical inhibition. However, PPD induced by somatosensory stimulation is variable, and the reasons for between- and within-subject PPD variability remains unclear. Therefore, the purpose of this study was to clarify the factors influencing PPD variability induced by somatosensory stimulation. The study participants were 19 healthy volunteers. First, we investigated the relationship between the PPD ratio of each component (N20m, P35m, and P60m) of the somatosensory magnetic field, and the alpha, beta, and gamma band changes in power [event-related desynchronization (ERD) and event-related synchronization (ERS)] induced by median nerve stimulation. Second, because brain-derived neurotrophic factor (BDNF) gene polymorphisms reportedly influence the PPD ratio, we assessed whether BDNF genotype influences PPD ratio variability. Finally, we evaluated the test-retest reliability of PPD and the alpha, beta, and gamma ERD/ERS induced by somatosensory stimulation. Significant positive correlations were observed between the P60m_PPD ratio and beta power change, and the P60m_PPD ratio was significantly smaller for the beta ERD group than for the beta ERS group. P35m_PPD was found to be robust and highly reproducible; however, P60m_PPD reproducibility was poor. In addition, the ICC values for alpha, beta, and gamma ERD/ERS were 0.680, 0.760, and 0.552 respectively. These results suggest that the variability of PPD for the P60m deflection may be influenced by the ERD/ERS magnitude, which is induced by median nerve stimulation.
Collapse
|
16
|
Mané A, Bergé D, Penzol MJ, Parellada M, Bioque M, Lobo A, González-Pinto A, Corripio I, Cabrera B, Sánchez-Torres AM, Saiz-Ruiz J, Bernardo M. Cannabis use, COMT, BDNF and age at first-episode psychosis. Psychiatry Res 2017; 250:38-43. [PMID: 28142064 DOI: 10.1016/j.psychres.2017.01.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/21/2016] [Accepted: 01/18/2017] [Indexed: 01/06/2023]
Abstract
Although an interaction between COMT Val158Met and BDNF Val66Met polymorphisms with cannabis use has been proposed with respect to the risk of psychosis emergence, findings remain inconclusive. The aim of the present study was to evaluate the different possible associations between these polymorphisms and early cannabis use and the age at the first episode of psychosis. The relationship between age at psychosis onset and COMT Val158Met and BDNF Val66Met polymorphisms with early cannabis use as well as those factors associated with early cannabis use were investigated. Among 260 Caucasian first-episode psychosis patients, early cannabis use and the presence of the met-allele from the BDNF Val66Met polymorphism were significantly associated with age at psychosis onset. Furthermore, early cannabis use was significantly associated with male gender in the logistic regression analysis. These findings provide evidence of the important role of early cannabis use and the Val66Met BDNF polymorphism on age at psychosis onset and they point out to sex-specific differences in cannabis use patterns.
Collapse
Affiliation(s)
- Anna Mané
- Hospital del Mar, Medical Research Institute (IMIM), Department of Neurosciences and Psychiatry, Barcelona, Spain; Centro de Investigación en Red de Salud Mental (CIBERSAM), Spain.
| | - Daniel Bergé
- Hospital del Mar, Medical Research Institute (IMIM), Department of Neurosciences and Psychiatry, Barcelona, Spain; Centro de Investigación en Red de Salud Mental (CIBERSAM), Spain
| | - Maria Jose Penzol
- Centro de Investigación en Red de Salud Mental (CIBERSAM), Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain
| | - Mara Parellada
- Centro de Investigación en Red de Salud Mental (CIBERSAM), Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Miquel Bioque
- Centro de Investigación en Red de Salud Mental (CIBERSAM), Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic Barcelona, Spain
| | - Antonio Lobo
- Centro de Investigación en Red de Salud Mental (CIBERSAM), Spain; Department of Psychiatry, Zaragoza University: IIS Aragón, Zaragoza, Spain
| | - Ana González-Pinto
- Centro de Investigación en Red de Salud Mental (CIBERSAM), Spain; Department of Psychiatry, University Hospital of Alava-Santiago, University of the Basque Country, Vitoria, Spain
| | - Iluminada Corripio
- Centro de Investigación en Red de Salud Mental (CIBERSAM), Spain; Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Department of Psychiatry, Institut d'Investigació Biomèdica-Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Bibiana Cabrera
- Centro de Investigación en Red de Salud Mental (CIBERSAM), Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic Barcelona, Spain
| | - Ana Maria Sánchez-Torres
- Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Jerónimo Saiz-Ruiz
- Centro de Investigación en Red de Salud Mental (CIBERSAM), Spain; IRYCIS, Department of Psychiatry, Hospital Ramon y Cajal, Universidad de Alcala, Madrid, Spain
| | - Miguel Bernardo
- Centro de Investigación en Red de Salud Mental (CIBERSAM), Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic Barcelona, Spain
| | -
- Centro de Investigación en Red de Salud Mental (CIBERSAM), Spain
| |
Collapse
|
17
|
Kheirollahi M, Kazemi E, Ashouri S. Brain-Derived Neurotrophic Factor Gene Val66Met Polymorphism and Risk of Schizophrenia: A Meta-analysis of Case-Control Studies. Cell Mol Neurobiol 2016; 36:1-10. [PMID: 26134309 PMCID: PMC11482494 DOI: 10.1007/s10571-015-0229-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/18/2015] [Indexed: 01/01/2023]
Abstract
According to evidences from previous family and association studies, it has been claimed that genetic factors are involved in the neuropathogenesis of Schizophrenia disorder. Whether the Val66Met variant of brain-derived neurotrophic factor (BDNF) gene plays any roles in the pathogenesis of this syndrome or could be a potential biomarker for prognosis of this disorder has been a long-standing controversial issue. We performed a meta-analysis restricted to case-control studies and searched Pubmed, PsychInfo, and Google scholar using keywords including 'association,' 'Val66Met,' 'BDNF,' and 'schizophrenia' published up to May 1, 2015. A total of 39 studies for schizophrenia were combined by fixed- and random-effects models. The pooled results from the schizophrenia sample indicated no significant evidence for the association of Val/Val and Val/Met genotypes of BDNF gene with schizophrenia, but it was observed that there is an association between Met/Met polymorphism and schizophrenia in Asian, European, and Chinese populations, this means that the risk of schizophrenia in Asian, European, and Chinese populations with Met/Met genotype is, respectively, 9, 26, and 9%. There was a significant association between BDNF Val66Met polymorphism and schizophrenia in our meta-analysis study. We cannot rule out the possibility that other polymorphisms in the BDNF gene are involved in the pathophysiology of schizophrenia. In addition, more studies should be conducted on the polymorphisms in other genes to elucidate their possible roles in schizophrenia.
Collapse
Affiliation(s)
- Majid Kheirollahi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| | - Elahe Kazemi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| | - Saeideh Ashouri
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| |
Collapse
|
18
|
Zhang XY, Chen DC, Tan YL, Tan SP, Luo X, Zuo L, Soares JC. BDNF polymorphisms are associated with schizophrenia onset and positive symptoms. Schizophr Res 2016; 170:41-7. [PMID: 26603468 DOI: 10.1016/j.schres.2015.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/07/2015] [Accepted: 11/10/2015] [Indexed: 12/22/2022]
Abstract
Numerous studies have showed that brain-derived neurotrophic factor (BDNF) may be involved in the pathogenesis and pathophysiology of schizophrenia. The purposes of this study were to investigate the potential association of BDNF gene polymorphisms with susceptibility to schizophrenia and the psychopathological symptoms in patients with schizophrenia in a Han Chinese population. Four polymorphisms (rs6265, rs12273539, rs10835210 and rs2030324) of the BDNF gene were analyzed in a case-control study of 1887 Han Chinese individuals (844 patients and 1043 controls). We assessed 825 patients for psychopathology using the Positive and Negative Syndrome Scale. In single marker analyses the BDNF rs10835210 mutant A allele was significantly associated with schizophrenia. Haplotype analyses revealed higher frequencies of haplotypes containing the mutant A allele of the rs10835210 in schizophrenia than controls. We also found that this polymorphism rs10835210 was associated with positive symptoms, and the patients carrying the mutational allele A showed more positive symptoms. These findings suggest the role of these BDNF gene variants in both susceptibility to schizophrenia and in clinical symptom severity.
Collapse
Affiliation(s)
- Xiang Yang Zhang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China; Department of Psychiatry and Behavioral Sciences, Harris County Psychiatric Center, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Da-Chun Chen
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yun-Long Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Shu-Ping Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, Harris County Psychiatric Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
19
|
Notaras M, Hill R, van den Buuse M. The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Mol Psychiatry 2015; 20:916-30. [PMID: 25824305 DOI: 10.1038/mp.2015.27] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/22/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has a primary role in neuronal development, differentiation and plasticity in both the developing and adult brain. A single-nucleotide polymorphism in the proregion of BDNF, termed the Val66Met polymorphism, results in deficient subcellular translocation and activity-dependent secretion of BDNF, and has been associated with impaired neurocognitive function in healthy adults and in the incidence and clinical features of several psychiatric disorders. Research investigating the Val66Met polymorphism has increased markedly in the past decade, and a gap in integration exists between and within academic subfields interested in the effects of this variant. Here we comprehensively review the role and relevance of the Val66Met polymorphism in psychiatric disorders, with emphasis on suicidal behavior and anxiety, eating, mood and psychotic disorders. The cognitive and molecular neuroscience of the Val66Met polymorphism is also concisely reviewed to illustrate the effects of this genetic variant in healthy controls, and is complemented by a commentary on the behavioral neuroscience of BDNF and the Val66Met polymorphism where relevant to specific disorders. Lastly, a number of controversies and unresolved issues, including small effect sizes, sampling of allele inheritance but not genotype and putative ethnicity-specific effects of the Val66Met polymorphism, are also discussed to direct future research.
Collapse
Affiliation(s)
- M Notaras
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - R Hill
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - M van den Buuse
- 1] Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia [2] School of Psychological Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Keshavan MS, Mehta UM, Padmanabhan JL, Shah JL. Dysplasticity, metaplasticity, and schizophrenia: Implications for risk, illness, and novel interventions. Dev Psychopathol 2015; 27:615-35. [PMID: 25997775 PMCID: PMC6283269 DOI: 10.1017/s095457941500019x] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this paper, we review the history of the concept of neuroplasticity as it relates to the understanding of neuropsychiatric disorders, using schizophrenia as a case in point. We briefly review the myriad meanings of the term neuroplasticity, and its neuroscientific basis. We then review the evidence for aberrant neuroplasticity and metaplasticity associated with schizophrenia as well as the risk for developing this illness, and discuss the implications of such understanding for prevention and therapeutic interventions. We argue that the failure and/or altered timing of plasticity of critical brain circuits might underlie cognitive and deficit symptoms, and may also lead to aberrant plastic reorganization in other circuits, leading to affective dysregulation and eventually psychosis. This "dysplastic" model of schizophrenia can suggest testable etiology and treatment-relevant questions for the future.
Collapse
Affiliation(s)
- Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jaya L. Padmanabhan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Jai L. Shah
- Douglas Hospital Research Center and Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
A role for the BDNF gene Val66Met polymorphism in schizophrenia? A comprehensive review. Neurosci Biobehav Rev 2015; 51:15-30. [DOI: 10.1016/j.neubiorev.2014.12.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 11/14/2014] [Accepted: 12/27/2014] [Indexed: 12/31/2022]
|
22
|
Strube W, Nitsche MA, Wobrock T, Bunse T, Rein B, Herrmann M, Schmitt A, Nieratschker V, Witt SH, Rietschel M, Falkai P, Hasan A. BDNF-Val66Met-polymorphism impact on cortical plasticity in schizophrenia patients: a proof-of-concept study. Int J Neuropsychopharmacol 2015; 18:pyu040. [PMID: 25612896 PMCID: PMC4360229 DOI: 10.1093/ijnp/pyu040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has been shown to be a moderator of neuroplasticity. A frequent BDNF-polymorphism (Val66Met) is associated with impairments of cortical plasticity. In patients with schizophrenia, reduced neuroplastic responses following non-invasive brain stimulation have been reported consistently. Various studies have indicated a relationship between the BDNF-Val66Met-polymorphism and motor-cortical plasticity in healthy individuals, but schizophrenia patients have yet to be investigated. The aim of this proof-of-concept study was, therefore, to test the impact of the BDNF-Val66Met-polymorphism on inhibitory and facilitatory cortical plasticity in schizophrenia patients. METHODS Cortical plasticity was investigated in 22 schizophrenia patients and 35 healthy controls using anodal and cathodal transcranial direct-current stimulation (tDCS) applied to the left primary motor cortex. Animal and human research indicates that excitability shifts following anodal and cathodal tDCS are related to molecular long-term potentiation and long-term depression. To test motor-cortical excitability before and after tDCS, well-established single- and paired-pulse transcranial magnetic stimulation protocols were applied. RESULTS Our analysis revealed increased glutamate-mediated intracortical facilitation in met-heterozygotes compared to val-homozygotes at baseline. Following cathodal tDCS, schizophrenia met-heterozygotes had reduced gamma-amino-butyric-acid-mediated short-interval intracortical inhibition, whereas healthy met-heterozygotes displayed the opposite effect. The BDNF-Val66Met-polymorphism did not influence single-pulse motor-evoked potential amplitudes after tDCS. CONCLUSIONS These preliminary findings support the notion of an association of the BDNF-Val66Met-polymorphism with observable alterations in plasticity following cathodal tDCS in schizophrenia patients. This indicates a complex interaction between inhibitory intracortical interneuron-networks, cortical plasticity, and the BDNF-Val66Met-polymorphism. Further replication and validation need to be dedicated to this question to confirm this relationship.
Collapse
Affiliation(s)
- Wolfgang Strube
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany (Dr Strube, Bunse, Schmitt, Falkai, and Hasan); Department of Clinical Neurophysiology, University of Goettingen, Goettingen, Germany (Dr Nitsche); Centre of Mental Health, Darmstadt-Dieburg Clinics, Groß-Umstadt, Germany (Dr Wobrock); Department of Psychiatry and Psychotherapy, University of Goettingen, Goettingen, Germany (Drs Wobrock, Rein, and Herrmann); Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil (Dr Schmitt); Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health Mannheim Medical Faculty Mannheim/Heidelberg University, Germany and Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany (Dr Nieratschker); Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany (Drs Witt and Rietschel).
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gatt JM, Burton KLO, Williams LM, Schofield PR. Specific and common genes implicated across major mental disorders: a review of meta-analysis studies. J Psychiatr Res 2015; 60:1-13. [PMID: 25287955 DOI: 10.1016/j.jpsychires.2014.09.014] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023]
Abstract
Major efforts have been directed at family-based association and case-control studies to identify the involvement of candidate genes in the major disorders of mental health. What remains unknown is whether candidate genes are associated with multiple disorders via pleiotropic mechanisms, and/or if other genes are specific to susceptibility for individual disorders. Here we undertook a review of genes that have been identified in prior meta-analyses examining specific genes and specific mental disorders that have core disruptions to emotional and cognitive function and contribute most to burden of illness- major depressive disorder (MDD), anxiety disorders (AD, including panic disorder and obsessive compulsive disorder), schizophrenia (SZ) and bipolar disorder (BD) and attention deficit hyperactivity disorder (ADHD). A literature review was conducted up to end-March 2013 which included a total of 1519 meta-analyses across 157 studies reporting multiple genes implicated in one or more of the five disorders studied. A total of 134 genes (206 variants) were identified as significantly associated risk variants for MDD, AD, ADHD, SZ or BD. Null genetic effects were also reported for 195 genes (426 variants). 13 genetic variants were shared in common between two or more disorders (APOE e4, ACE Ins/Del, BDNF Val66Met, COMT Val158Met, DAOA G72/G30 rs3918342, DAT1 40-bp, DRD4 48-bp, SLC6A4 5-HTTLPR, HTR1A C1019G, MTHR C677T, MTHR A1298C, SLC6A4 VNTR and TPH1 218A/C) demonstrating evidence for pleiotrophy. Another 12 meta-analyses of GWAS studies of the same disorders were identified, with no overlap in genetic variants reported. This review highlights the progress that is being made in identifying shared and unique genetic mechanisms that contribute to the risk of developing several major psychiatric disorders, and identifies further steps for progress.
Collapse
Affiliation(s)
- Justine M Gatt
- The Brain Dynamics Centre, Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia; Westmead Millennium Institute, Westmead, NSW, 2145, Australia; Neuroscience Research Australia, Randwick, NSW, 2031, Australia; School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Karen L O Burton
- The Brain Dynamics Centre, Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia; Westmead Millennium Institute, Westmead, NSW, 2145, Australia; Neuroscience Research Australia, Randwick, NSW, 2031, Australia; School of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Leanne M Williams
- The Brain Dynamics Centre, Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia; Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA, 94305-5717, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia; School of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
24
|
Zhang XY, Chen DC, Tan YL, Luo X, Zuo L, Lv MH, Shah NN, Zunta-Soares GB, Soares JC. Smoking and BDNF Val66Met polymorphism in male schizophrenia: a case-control study. J Psychiatr Res 2015; 60:49-55. [PMID: 25455509 DOI: 10.1016/j.jpsychires.2014.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/29/2022]
Abstract
Some recent studies show an association between a functional polymorphism of BDNF gene (Val66Met) and the susceptibility to nicotine dependence and we hypothesized that this polymorphism was associated with smoking in both schizophrenia patients and healthy controls. The BDNF Val66Met gene polymorphism was genotyped in 690 chronic male schizophrenia patients (smoker/nonsmoker = 522/169) and 628 male controls (smoker/nonsmoker = 322/306) using a case-control design. Nicotine dependence (ND) was assessed by the cigarettes smoked per day (CPD), the Heaviness of Smoking Index (HSI), and the Fagerstrom Test for ND (FTND). Patients also were rated on the Positive and Negative Syndrome Scale (PANSS). The results showed no significant differences in BDNF Val66Met genotype and allele distributions between the patients and healthy controls or between smokers and nonsmokers in either patients or healthy controls alone. In patient groups, however, the smokers with the Met allele had significantly higher HSI scores (Met/Met: 2.8 ± 1.7 vs. Met/Val: 2.2 ± 1.7 vs. Val/Val: 2.0 ± 1.6, p < 0.01) and a trend toward a significantly higher FTND score (p = 0.09) than those with the Val/Val genotype. In addition, the smokers showed significantly lower PANSS negative symptom and total scores, longer duration of illness and more hospitalizations (all p < 0.05). In the control group, the smokers with the Met allele started smoking significantly earlier than those with the Val/Val genotype (both p < 0.05). These results suggest that the BDNF Val66Met polymorphism may affect a smoker's response to nicotine in both schizophrenia and healthy controls from a Chinese Han population, but with differential effects in different aspects of smoking behaviors.
Collapse
Affiliation(s)
- Xiang Yang Zhang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China; Department of Psychiatry and Behavioral Sciences, Harris County Psychiatric Center, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Da-Chun Chen
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yun-Long Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Meng-Han Lv
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Nurun N Shah
- Department of Psychiatry and Behavioral Sciences, Harris County Psychiatric Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, Harris County Psychiatric Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, Harris County Psychiatric Center, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
25
|
Zhao X, Huang Y, Chen K, Li D, Han C, Kan Q. The brain-derived neurotrophic factor Val66Met polymorphism is not associated with schizophrenia: An updated meta-analysis of 11,480 schizophrenia cases and 13,490 controls. Psychiatry Res 2015; 225:217-220. [PMID: 25468641 DOI: 10.1016/j.psychres.2014.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 02/05/2023]
|
26
|
Renjan V, Nurjono M, Lee J. Serum brain-derived neurotrophic factor (BDNF) and its association with remission status in Chinese patients with schizophrenia. Psychiatry Res 2014; 220:193-6. [PMID: 25174850 DOI: 10.1016/j.psychres.2014.07.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 11/17/2022]
Abstract
The neurotrophin, brain-derived neurotrophic factor (BDNF), characterises a probable neurobiochemical explanation of maldevelopments in schizophrenia and is a candidate biomarker of the illness. A paucity of studies examining neurobiochemical predictors of remission in schizophrenia exists. In this study, we seek to examine if serum BDNF level is associated with remission status in a sample of Chinese patients with schizophrenia. This study did not find a significant relationship between serum BDNF and remission in patients with schizophrenia. Identification of a suitable biomarker for diagnosis, management, and prognostic outcome is crucial and warrants further study.
Collapse
Affiliation(s)
- Vidhya Renjan
- Research Division, Institute of Mental Health, Singapore
| | | | - Jimmy Lee
- Research Division, Institute of Mental Health, Singapore; Department of General Psychiatry 1, Institute of Mental Health, Singapore; Office of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore.
| |
Collapse
|
27
|
Refining and integrating schizophrenia pathophysiology – Relevance of the allostatic load concept. Neurosci Biobehav Rev 2014; 45:183-201. [DOI: 10.1016/j.neubiorev.2014.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 04/02/2014] [Accepted: 06/09/2014] [Indexed: 12/20/2022]
|
28
|
Pełka-Wysiecka J, Wroński M, Jasiewicz A, Grzywacz A, Tybura P, Kucharska-Mazur J, Bieńkowski P, Samochowiec J. BDNF rs 6265 polymorphism and COMT rs 4680 polymorphism in deficit schizophrenia in Polish sample. Pharmacol Rep 2014; 65:1185-93. [PMID: 24399714 DOI: 10.1016/s1734-1140(13)71476-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/10/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Deficit schizophrenia (DS) is distinguished from the group of schizophrenic psychoses based on the presence of primary negative symptoms. It differs from nondeficit (NDS) forms of schizophrenia in dimensions such as risk factors, family history, course of illness and neurobiological differences. The aim of the study was assessment of a potential association of the investigated polymorphisms of the brain-derived neurotrophic factor (BDNF) and catechol-O-methyltransferase (COMT) genes with the deficit syndrome in schizophrenia. METHODS A cohort of 200 patients with schizophrenia (81 DS and 119 NDS subjects) and a group of 100 control subjects matched for ethnicity, sex and age were recruited. Somatic and psychometric assessment were conducted as well as structured interview about the influence of adverse biological, family and social factors. Genetic analysis of the BDNF (Val66Met) rs6265 and the COMT (Val158Met) rs4680 polymorphisms was performed. RESULTS We found significant differences between DS and NDS in rs4680 COMT genotype distribution: more homozygous Val/Val were found (31 vs. 17%) in the NDS compared to the DS subgroup. No associations were found between the investigated polymorphisms of the BDNF gene and the presence of schizophrenia either in DS and NDS subgroups. CONCLUSION The analysis of the COMT rs4680 polymorphism in the present DS and NDS study shows that some genetic factors may be relevant in analyzing the reasons for the differentiation of schizophrenic subtypes.
Collapse
Affiliation(s)
- Justyna Pełka-Wysiecka
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26, PL 71-460 Szczecin, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kishi T, Fukuo Y, Moriwaki M, Iwata N, Hori H, Yoshimura R, Katsuki A, Ikenouchi-Sugita A, Atake K, Umene-Nakano W, Nakamura J, Kaneda Y, Fujita K. No significant association between brain-derived neurotrophic factor gene rs6265 and cognitive function in Japanese patients with schizophrenia. Psychiatry Res 2014; 215:803-5. [PMID: 24461776 DOI: 10.1016/j.psychres.2013.12.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/26/2013] [Accepted: 12/31/2013] [Indexed: 10/25/2022]
Affiliation(s)
- Taro Kishi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | - Yasuhisa Fukuo
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Masatsugu Moriwaki
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Hikaru Hori
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Asuka Katsuki
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Atsuko Ikenouchi-Sugita
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kiyokazu Atake
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Wakako Umene-Nakano
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Jun Nakamura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Yasuhiro Kaneda
- Department of Psychiatry, Iwaki Clinic, Anan, Tokushima 774-0014, Japan
| | - Kiyoshi Fujita
- Department of Psychiatry, The Okehazama Hospital, Toyoake, Aichi 470-1168, Japan; The Neuroscience Research Center, Toyoake, Aichi 470-1168, Japan
| |
Collapse
|
30
|
BDNF Val66Met polymorphism and anxiety/depression symptoms in schizophrenia in a Chinese Han population. Psychiatr Genet 2013; 23:124-9. [PMID: 23532065 DOI: 10.1097/ypg.0b013e328360c866] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although several lines of evidences suggest that the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism may be involved in the pathophysiology of schizophrenia, this association remains controversial. Here, we aim to investigate the genetic association between the BDNF Val66Met polymorphism and schizophrenia and to explore whether this polymorphism could influence the severity of clinical symptoms in schizophrenic patients in a Chinese Han population. PATIENTS AND METHODS Genotyping of the BDNF Val66Met polymorphism was carried out in 456 schizophrenic patients and 483 controls using the fluorescence resonance energy transfer method. The patients' psychotic symptoms were assessed using the Positive and Negative Syndrome Scale. The general clinical data of schizophrenic patients were analyzed. RESULTS There were significant differences in the genotype distribution and allelic frequencies of the BDNF Val66Met polymorphism between the schizophrenia group and the controls. Multiple linear regression analysis showed that the BDNF Val66Met polymorphism explained ~16% of the variance in anxiety/depression symptoms in schizophrenic patients. CONCLUSION Our data provide evidence that the BDNF Val66Met polymorphism may be involved in the etiology of schizophrenia in a Chinese Han population. Furthermore, the BDNF Val66Met polymorphism is a significant factor influencing the severity of anxiety/depression symptoms in schizophrenic patients.
Collapse
|
31
|
Li W, Zhou N, Yu Q, Li X, Yu Y, Sun S, Kou C, Chen DC, Xiu MH, Kosten TR, Zhang XY. Association of BDNF gene polymorphisms with schizophrenia and clinical symptoms in a Chinese population. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:538-45. [PMID: 23832605 DOI: 10.1002/ajmg.b.32183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 06/14/2013] [Indexed: 11/07/2022]
Abstract
The neurodevelopmental hypothesis is well established in schizophrenia. Accumulating evidence has shown that BDNF may be involved in the pathogenesis of schizophrenia. This study aimed to investigate the potential association of BDNF gene polymorphisms with susceptibility to schizophrenia and with the psychopathological symptoms in patients with schizophrenia in a Han Chinese population. Three polymorphisms (rs6265, rs12273539, and rs10835210) of the BDNF gene were analyzed in a case-control study of 709 Han Chinese individuals (375 patients and 334 controls). The patients' psychopathology was assessed using the positive and negative syndrome scale (PANSS). We found no significant differences in the genotype and allele distributions of all three polymorphisms between the patient and control groups; however, we found a trend toward to significant overall difference in the estimated haplotype frequencies, with more frequent haplotype ATC of rs6265-rs12273539-rs10835210 in the schizophrenic patients than in controls (P = 0.027). The quantitative trait analysis by the UNPHASED program showed significant associations between the rs6265 (A)-rs12273539 (C)-rs10835210 (A) haplotype and negative symptom scores from the PANSS (x(2) = 5.79, P = 0.016). Our findings suggest that the BDNF gene polymorphisms may play a small effect on susceptibility to schizophrenia, but may contribute to the negative symptoms of the disease.
Collapse
Affiliation(s)
- Wenjun Li
- School of Public Health, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nieto R, Kukuljan M, Silva H. BDNF and schizophrenia: from neurodevelopment to neuronal plasticity, learning, and memory. Front Psychiatry 2013; 4:45. [PMID: 23785335 PMCID: PMC3683823 DOI: 10.3389/fpsyt.2013.00045] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 05/14/2013] [Indexed: 02/03/2023] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is a neurotrophin that has been related not only to neurodevelopment and neuroprotection, but also to synapse regulation, learning, and memory. Research focused on the neurobiology of schizophrenia has emphasized the relevance of neurodevelopmental and neurotoxicity-related elements in the pathogenesis of this disease. Research focused on the clinical features of schizophrenia in the past decades has emphasized the relevance of cognitive deficits of this illness, considered a core manifestation and an important predictor for functional outcome. Variations in neurotrophins such as BDNF may have a role as part of the molecular mechanisms underlying these processes, from the neurodevelopmental alterations to the molecular mechanisms of cognitive dysfunction in schizophrenia patients.
Collapse
Affiliation(s)
- R. Nieto
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- Clínica Psiquiátrica Universitaria, Hospital Clínico Universidad de Chile, Santiago, Chile
- Laboratorio de Neurobiología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M. Kukuljan
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- Laboratorio de Neurobiología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - H. Silva
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- Clínica Psiquiátrica Universitaria, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
33
|
Zhang XY, Chen DC, Xiu MH, Haile CN, Luo X, Xu K, Zhang HP, Zuo L, Zhang Z, Zhang X, Kosten TA, Kosten TR. Cognitive and serum BDNF correlates of BDNF Val66Met gene polymorphism in patients with schizophrenia and normal controls. Hum Genet 2012; 131:1187-95. [PMID: 22362486 PMCID: PMC3671849 DOI: 10.1007/s00439-012-1150-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/14/2012] [Indexed: 12/15/2022]
Abstract
Studies suggest that a functional polymorphism of the brain-derived neurotrophic factor gene (BDNF Val66Met) may mediate hippocampal-dependent cognitive functions. A few studies have reported its role in cognitive deficits in schizophrenia including its association with peripheral BDNF levels as a mediator of these cognitive deficits. We assessed 657 schizophrenic inpatients and 445 healthy controls on the repeatable battery for the assessment of neuropsychological status (RBANS), the presence of the BDNF Val66Met polymorphism and serum BDNF levels. We assessed patient psychopathology using the Positive and Negative Syndrome Scale. We showed that visuospatial/constructional abilities significantly differed by genotype but not genotype × diagnosis, and the Val allele was associated with better visuospatial/constructional performance in both schizophrenic patients and healthy controls. Attention performance showed a significant genotype by diagnosis effect. Met allele-associated attention impairment was specific to schizophrenic patients and not shown in healthy controls. In the patient group, partial correlation analysis showed a significant positive correlation between serum BDNF and the RBANS total score. Furthermore, the RBANS total score showed a statistically significant BDNF level × genotype interaction. We demonstrated an association between the BDNF Met variant and poor visuospatial/constructional performance. Furthermore, the BDNF Met variant may be specific to attentional decrements in schizophrenic patients. The association between decreased BDNF serum levels and cognitive impairment in schizophrenia is dependent on the BDNF Val66Met polymorphism.
Collapse
Affiliation(s)
- Xiang Yang Zhang
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang X, Liu P, Sun J, Wang G, Zeng F, Yuan K, Liu J, Dong M, von Deneen KM, Qin W, Tian J. Impact of brain-derived neurotrophic factor Val66Met polymorphism on cortical thickness and voxel-based morphometry in healthy Chinese young adults. PLoS One 2012; 7:e37777. [PMID: 22719849 PMCID: PMC3374831 DOI: 10.1371/journal.pone.0037777] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/23/2012] [Indexed: 01/09/2023] Open
Abstract
Background Following voxel-based morphometry (VBM), brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265) has been shown to affect human brain morphology in Caucasians. However, little is known about the specific role of the Met/Met genotype on brain structure. Moreover, the relationship between BDNF Val66Met polymorphism and Chinese brain morphology has not been studied. Methodology/Principal Findings The present study investigated brain structural differences among three genotypes of BDNF (rs6265) for the first time in healthy young Chinese adults via cortical thickness analysis and VBM. Brain differences in Met carriers using another grouping method (combining Val/Met and Met/Met genotypes into a group of Met carriers as in most previous studies) were also investigated using VBM. Dual-approach analysis revealed less gray matter (GM) in the frontal, temporal, cingulate and insular cortices in the Met/Met group compared with the Val/Val group (corrected, P<0.05). Areas with less GM in the Val/Met group were included in the Met/Met group. VBM differences in Met carriers were only found in the middle cingulate cortex. Conclusions/Significance The current results indicated a unique pattern of brain morphologic differences caused by BDNF (rs6265) in young Chinese adults, in which the Met/Met genotype markedly affected the frontal, temporal, cingulate, and insular regions. The grouping method with Met carriers was not suitable to detect the genetic effect of BDNF Val66Met polymorphism on brain morphology, at least in the Chinese population, because it may hide some specific roles of Met/Met and Val/Met genotypes on brain structure.
Collapse
Affiliation(s)
- Xuejuan Yang
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Peng Liu
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Jinbo Sun
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Guihong Wang
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Fang Zeng
- The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kai Yuan
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Jixin Liu
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Minghao Dong
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Karen M. von Deneen
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Wei Qin
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
- * E-mail: (WQ); or (JT)
| | - Jie Tian
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
- * E-mail: (WQ); or (JT)
| |
Collapse
|
35
|
Hashim HM, Fawzy N, Fawzi MM, Karam RA. Brain-derived neurotrophic factor Val66Met polymorphism and obsessive-compulsive symptoms in Egyptian schizophrenia patients. J Psychiatr Res 2012; 46:762-6. [PMID: 22521161 DOI: 10.1016/j.jpsychires.2012.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 02/29/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has been advanced as a candidate gene for schizophrenia. BDNF promote the function and growth of 5-HT neurons in the brain and modulate the synaptic plasticity of DRD3-secreting neurons in the striatum, suggesting involvement of BDNF in the mediation of obsessive-compulsive disorder. OBJECTIVES To test the hypothesis that the BDNF Val66Met polymorphism influence obsessive-compulsive symptoms (OCS) in schizophrenia, we examined the association between the BDNF Val66Met genotypes and OCS in a group of patients with schizophrenia. METHODS 320 schizophrenia patients were assessed using the Yale-Brown Obsessive-Compulsive Scale (YBOCS). BDNF Val66Met polymorphism was genotyped using PCR-RFLP method, and severity of OCS were compared between the genotype groups. RESULTS Out of the 320 schizophrenia patients, 120 patients (37.5%) had significant OCS. There was a significant excess of valine allele in the schizophrenia with-OCS group compared to the without-OCS group. The mean YBOCS scores were significantly different among the three genotype groups. Val/Val homozygote patients had higher mean YBOCS scores compared to Val/Met genotype (p = 0.0001) as well as to the Met/Met homozygote group (p = 0.003). CONCLUSION Our data suggested an association between BDNF Val66Met polymorphism and OCS in Egyptian schizophrenia patients.
Collapse
Affiliation(s)
- Haytham M Hashim
- Department of Psychiatry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | | | | |
Collapse
|
36
|
Abstract
Brain derived neurotrophic factor (BDNF) is the most prevalent growth factor in the central nervous system (CNS). It is essential for the development of the CNS and for neuronal plasticity. Because BDNF plays a crucial role in development and plasticity of the brain, it is widely implicated in psychiatric diseases. This review provides a summary of clinical and preclinical evidence for the involvement of this ubiquitous growth factor in major depressive disorder, schizophrenia, addiction, Rett syndrome, as well as other psychiatric and neurodevelopmental diseases. In addition, the review includes a discussion of the role of BDNF in the mechanism of action of pharmacological therapies currently used to treat these diseases, such antidepressants and antipsychotics. The review also covers a critique of experimental therapies such as BDNF mimetics and discusses the value of BDNF as a target for future drug development.
Collapse
Affiliation(s)
- Anita E Autry
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9070, USA
| | | |
Collapse
|
37
|
Blood CADPS2ΔExon3 expression is associated with intelligence and memory in healthy adults. Biol Psychol 2012; 89:117-22. [DOI: 10.1016/j.biopsycho.2011.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/26/2011] [Accepted: 09/26/2011] [Indexed: 11/22/2022]
|
38
|
Nagata T, Shinagawa S, Nukariya K, Ochiai Y, Kawamura S, Agawa-Ohta M, Kasahara H, Nakayama K, Yamada H. Association between brain-derived neurotrophic factor (BDNF) gene polymorphisms and executive function in Japanese patients with Alzheimer's disease. Psychogeriatrics 2011; 11:141-9. [PMID: 21951954 DOI: 10.1111/j.1479-8301.2011.00364.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND To address the functional roles of genetic polymorphisms of brain-derived neurotrophic factor (BDNF) in Alzheimer's disease (AD) from a neuropsychological aspect, we used a cross-sectional study design to investigate the association between novel single nucleotide polymorphisms (SNPs) of the BDNF gene (Val66Met (G196A) and C270T) and the Frontal Assessment Battery (FAB) score, which reflects executive function as a non-memory cognitive impairment. METHODS One hundred and sixty-nine outpatients with AD or amnestic mild cognitive impairment (A-MCI) were recruited to the study and divided into three genotypic groups for each representative BDNF functional polymorphism as follows: (i) Val66Met (G196A): G/G (n = 45), G/A (n = 104), and A/A (n = 20); and (ii) C270T: C/C (n = 160), C/T (n = 9), and T/T (n = 0). Then, age, sex ratio, duration of illness (months), education years, Mini-Mental State Examination (MMSE) score, behavioral pathology in Alzheimer disease (Behave-AD) score, Clinical Dementia Rating (CDR) ratio, and total and subtest FAB scores were compared between the genotypic groups for each SNP. RESULTS Significant differences were found in the total (P < 0.01) and subtest (conflicting instructions and prehension behavior; P < 0.01) FAB scores between the C270T polymorphism groups (C/C and C/T), but not among the G196A polymorphism groups. However, no significant differences in age, sex ratio, duration of illness (months), education years, Behave-AD score, CDR ratio, or MMSE score (reflecting attention and memory function) were found between the individual polymorphism genotypes (G196A and C270T). CONCLUSION Of the known BDNF polymorphisms, the C270T SNP may influence executive dysfunction as a non-memory cognitive impairment in Japanese patients with AD.
Collapse
Affiliation(s)
- Tomoyuki Nagata
- Division of Molecular Genetics, Institute of DNA Medicine, Department of Psychiatry, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yi Z, Zhang C, Wu Z, Hong W, Li Z, Fang Y, Yu S. Lack of effect of brain derived neurotrophic factor (BDNF) Val66Met polymorphism on early onset schizophrenia in Chinese Han population. Brain Res 2011; 1417:146-50. [PMID: 21917241 DOI: 10.1016/j.brainres.2011.08.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/13/2011] [Accepted: 08/16/2011] [Indexed: 01/17/2023]
Abstract
Schizophrenia is a chronic psychiatric disorder with high heritability. Schizophrenic patients with early-age onset tend to have a greater genetic component and may be an attractive subpopulation for genetic studies. Brain-derived neurotrophic factor (BDNF) is considered a candidate gene for schizophrenia. A single nucleotide polymorphism (BDNF Val66Met) was reported to be associated with schizophrenia, although discrepancy remains. The aim of this study was to evaluate the association between BDNF Val66Met polymorphism and schizophrenia using an early onset sample in the Chinese Han population. Our sample consisted of 353 schizophrenic patients with onset before age 18 and 394 healthy controls. All subjects were of an ethnically homogenous Han Chinese origin. No significant differences of genotype or allele distribution were identified between the patients and controls. However, the Met allele was significantly associated with an earlier age of onset in male schizophrenic patients (Kaplan-Meier log-rank test P=0.005), but not in females (P=0.289). The BDNF Val66Met polymorphism has an important effect on the age of onset of schizophrenia in a gender-specific manner. This may represent a significant genetic clue for the etiology of schizophrenia and thus, further studies are required to uncover the exact role of BDNF in the development of schizophrenia.
Collapse
Affiliation(s)
- Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Koolschijn PCMP, van Haren NEM, Bakker SC, Hoogendoorn MLC, Hulshoff Pol HE, Kahn RS. Effects of brain-derived neurotrophic factor Val66Met polymorphism on hippocampal volume change in schizophrenia. Hippocampus 2011; 20:1010-7. [PMID: 19714565 DOI: 10.1002/hipo.20699] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A functional polymorphism of the brain-derived neurotrophic factor (BDNF) gene (Val66Met) has been associated with the risk for schizophrenia and volume differences in the hippocampus. However, little is known about the association between progressive brain volume change in schizophrenia and BDNF genotype. The aim of this study was to investigate the relationship between hippocampal volume change in patients with schizophrenia and healthy control subjects and BDNF genotype. Two structural magnetic resonance imaging brain scans were acquired of 68 patients with schizophrenia and 83 healthy subjects with an interval of approximately 5 yrs. Hippocampal volume change was measured and related to BDNF genotype in patients and healthy controls. BDNF genotype was not associated with hippocampal volume change over time in patients or healthy controls, nor could we replicate earlier findings on smaller hippocampal volume in Met-carriers. However, we did find a genotype-by-diagnosis interaction at baseline demonstrating smaller hippocampal volumes in patients homozygous for the Val-allele relative to healthy Val-homozygotes. In addition, irrespective of genotype, patients showed smaller hippocampal volumes compared with healthy controls at baseline. In summary, our results suggest that the BDNF Val66Met polymorphism is not associated with hippocampal volume change over time. Nevertheless, our findings may support the possibility that BDNF affects brain morphology differently in schizophrenia patients and healthy subjects.
Collapse
Affiliation(s)
- P Cédric M P Koolschijn
- Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
41
|
Decoster J, van Os J, Kenis G, Henquet C, Peuskens J, De Hert M, van Winkel R. Age at onset of psychotic disorder: cannabis, BDNF Val66Met, and sex-specific models of gene-environment interaction. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:363-9. [PMID: 21305693 DOI: 10.1002/ajmg.b.31174] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 12/30/2011] [Indexed: 11/10/2022]
Abstract
Discovering modifiable predictors for age at onset may help to identify predictors of transition to psychotic disorder in the "at-risk mental state." Inconsistent effects of sex, BDNF Val66Met (rs6265), and cannabis use on age of onset were previously reported. BDNF Val66Met and cannabis use before illness onset were retrospectively assessed in a sample of 585 patients with schizophrenia and their association with age at onset was evaluated. Cannabis use was significantly associated with earlier age at onset of psychotic disorder (AOP; average difference 2.7 years, P < 0.001), showing dose-response effects with higher frequency and earlier age at first use. There was a weak association between BDNF Val66Met genotype and AOP (difference 1.2 years; P = 0.050). No evidence was found for BDNF × cannabis interaction (interaction χ(2) (1) = 0.65, P = 0.420). However, a significant BDNF × cannabis × sex interaction was found (interaction χ(2) (1) = 4.99, P = 0.026). In female patients, cannabis use was associated with earlier AOP in BDNF Met-carriers (difference 7 years), but not in Val/Val-genotypes. In male patients, cannabis use was associated with earlier AOP irrespective of BDNF Val66Met genotype (difference 1.3 years). BDNF Val66Met genotype in the absence of cannabis use did not influence AOP, neither in female or male patients with psychotic disorder. Complex interactions between cannabis and BDNF may shape age at onset in female individuals at risk of psychotic disorder. No compelling evidence was found that BDNF genotype is associated with age at onset of psychotic disorder in the absence of cannabis use.
Collapse
Affiliation(s)
- Jeroen Decoster
- University Psychiatric Centre Catholic University Leuven, Kortenberg, Belgium
| | | | | | | | | | | | | |
Collapse
|
42
|
Whalley HC, Baig BJ, Hall J, Job DE, McIntosh AM, Cunningham-Owens DG, Johnstone EC, Lawrie SM. Effects of the BDNF val66met polymorphism on prefrontal brain function in a population at high genetic risk of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1474-82. [PMID: 20957650 DOI: 10.1002/ajmg.b.31128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 08/30/2010] [Indexed: 12/24/2022]
Abstract
A single nucleotide polymorphism (val66met) in the brain derived neurotrophic factor (BDNF) gene has been shown to be a risk factor for a number of psychiatric disorders, including schizophrenia. This polymorphism has also been shown to have effects on prefrontal brain morphology and function. This study aims to clarify the effects of the val66met polymorphism on prefrontal brain function in a population at high genetic risk for schizophrenia. The Edinburgh High Risk Study has followed young individuals who had one first- or second-degree relative with schizophrenia and a minimum of one further genetic relative with the illness. A sample of 62 individuals provided both genetic and functional imaging data using the Hayling sentence completion task. Individuals with the BDNF ValVal (presumed risk) genotype (n = 41) showed relatively increased activation of the anterior cingulate cortex in relation to Met carrier individuals (n = 21) during sentence completion conditions versus baseline, against a background of similar levels of task performance. It appeared from further investigation that this relatively increased activation was attributable to a failure to disengage or suppress activation in the high risk ValVal group during the task condition, suggesting that BDNF may contribute to the abnormal default network reported in schizophrenia. These results suggest that this gene affects prefrontal brain function in those at high genetic risk for the disorder, unconfounded by medication effects. BDNF may therefore be one of the heritable factors involved in the development of abnormal prefrontal function in schizophrenia. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Heather C Whalley
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zai CC, Manchia M, De Luca V, Tiwari AK, Squassina A, Zai GC, Strauss J, Shaikh SA, Freeman N, Meltzer HY, Lieberman J, Le Foll B, Kennedy JL. Association study of BDNF and DRD3 genes in schizophrenia diagnosis using matched case-control and family based study designs. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1412-8. [PMID: 20667458 DOI: 10.1016/j.pnpbp.2010.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/12/2010] [Accepted: 07/19/2010] [Indexed: 01/13/2023]
Abstract
Schizophrenia (SCZ) is a severe neuropsychiatric disorder with prominent genetic etiologic factors. The dopamine receptor DRD3 gene is a strong candidate in genetic studies of SCZ because of the dopamine hypothesis of SCZ and the selective expression of D(3) in areas of the limbic system implicated in the disease. We examined 15 single-nucleotide polymorphisms (SNPs) in DRD3 in our sample of European origin consisting of 95 small nuclear SCZ families and 167 case-control pairs. We also examined four BDNF SNPs in our samples because of evidence for BDNF regulation of DRD3 expression (Guillin et al., 2001). We found a nominally significant genotypic association with rs7633291 and allelic association with rs1025398 alleles. However, these observations did not survive correction for multiple testing. We did not find a statistically significant association with the other DRD3 and BDNF polymorphisms. Taken together, the results from the present study suggest that BDNF and DRD3 may not be involved in SCZ susceptibility.
Collapse
Affiliation(s)
- Clement C Zai
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada M5T 1R8
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhou DH, Yan QZ, Yan XM, Li CB, Fang H, Zheng YL, Zhang CX, Yao HJ, Chen DC, Xiu MH, Kosten TR, Zhang XY. The study of BDNF Val66Met polymorphism in Chinese schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:930-3. [PMID: 20420877 DOI: 10.1016/j.pnpbp.2010.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 04/14/2010] [Accepted: 04/20/2010] [Indexed: 11/15/2022]
Abstract
Accumulating evidence showed that brain-derived neurotrophic factor (BDNF) may be involved in the pathophysiology of schizophrenia. Recent studies have reported that the Val66Met polymorphism of the BDNF gene may be associated with susceptibility for schizophrenia and age of onset of this disease, with mix results. In the present study, the BDNF Val66Met gene polymorphism was examined in 387 inpatients (259 men and 128 women) meeting the DSM-IV criteria for schizophrenia and unrelated 365 healthy controls (255 men and 110 women). The schizophrenia symptomatology was assessed by the Positive and Negative Syndrome Scale (PANSS). Age of onset was defined as the age at which the psychotic symptoms first appeared. Our results showed that genotype frequency distributions and allelic frequencies did not differ between patients and controls. No interaction was found between sex and genotypes. Analysis of covariance (ANCOVA) showed a significance of the BDNF Val66Met genotypes on the age of onset (F=3.76, p<0.02), after adjusting sex, age and duration of illness. Furthermore, ANCOVA showed that the significance of the BDNFVal66Met genotypes on age of onset was increased comparing the Val66Met heterozygotes with the combination of Val66Val and Met66Met homozygotes (F=5.85, p<0.01). Our results suggest that the BDNF Val66Met polymorphism may not contribute directly to the susceptibility to schizophrenia, but to the onset of the disease. Furthermore, our results show the heterozygous effect of the BDNF Val66Met gene on the clinical variability of schizophrenia phenotype.
Collapse
Affiliation(s)
- Dong Hao Zhou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kawashima K, Ikeda M, Kishi T, Kitajima T, Yamanouchi Y, Kinoshita Y, Okochi T, Aleksic B, Tomita M, Okada T, Kunugi H, Inada T, Ozaki N, Iwata N. BDNF is not associated with schizophrenia: data from a Japanese population study and meta-analysis. Schizophr Res 2009; 112:72-9. [PMID: 19406621 DOI: 10.1016/j.schres.2009.03.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 03/21/2009] [Accepted: 03/28/2009] [Indexed: 12/23/2022]
Abstract
A variety of evidence suggests brain-derived neurotrophic factor (BDNF) as a candidate gene for schizophrenia, and several genetic studies have shown a significant association between the disease and certain SNPs within BDNF (specifically, Val66Met and C270T). According to a recent study, the functional microsatellite marker BDNF-LCPR (BDNF-linked complex polymorphic region), which affects the expression level of BDNF, is associated with bipolar disorder. The goals of our current study were to 1) evaluate the quality of HapMap-based linkage disequilibrium (LD) tagging of BDNF-LCPR, 2) examine whether these tagging SNPs are associated with schizophrenia in a Japanese population, and 3) conduct a meta-analysis of the two most extensively studied polymorphisms: Val66Met and C270T. We genotyped eight tagging SNPs, including Val66Met and C270T. Our LD evaluation showed that BDNF-LCPR could be represented by these tagging SNPs in controls (with 73.5% allelic coverage). However, the functional A1 allele was not captured due to its low minor allele frequency (2.2%). In a case-control study (1117 schizophrenics and 1102 controls), no association was found in single-marker or multimarker analysis. Moreover, in a meta-analysis, the Val66Met polymorphism was not associated with schizophrenia, whereas C270T showed a trend for association in a fixed model (p=0.036), but not in a random model (p=0.053). From these findings, we conclude that if BDNF is indeed associated with schizophrenia, the A1 allele in BDNF-LCPR would be the most promising candidate. Further LD evaluation, as well as an association study in which BDNF-LCPR is genotyped directly, would be required for a more conclusive result.
Collapse
Affiliation(s)
- Kunihiro Kawashima
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zarrilli F, Angiolillo A, Castaldo G, Chiariotti L, Keller S, Sacchetti S, Marusic A, Zagar T, Carli V, Roy A, Sarchiapone M. Brain derived neurotrophic factor (BDNF) genetic polymorphism (Val66Met) in suicide: a study of 512 cases. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:599-600. [PMID: 18759323 DOI: 10.1002/ajmg.b.30849] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Kas MJH, Gelegen C, Schalkwyk LC, Collier DA. Interspecies comparisons of functional genetic variations and their implications in neuropsychiatry. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:309-17. [PMID: 18561257 DOI: 10.1002/ajmg.b.30815] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Animal studies are important for the identification and functional characterization of the biological substrates underlying complex psychiatric disorders. However, novel insights into the relationship between the genome and behavior are needed for the development of fully valid translational models. Based on the notion that in different species, the same genes may independently give rise to alleles with similar functional and phenotypic effects, either under similar selection or through similar genomic mechanisms, we propose the use of genetic validity as a tool for identifying analogous pathology between animals and human neuropsychiatric disorders. Furthermore, the identification of copy number variants which disrupt entire genes, reinforces the notion that transgenic animals, such as knockouts or knock-ins, may provide unexpectedly valid disease models for psychiatric traits. To illustrate interspecies comparison of genetic variations in relation to neurobehavioral traits, examples are provided for the BDNF, COMT, and DISC1 genes in mouse and man. We propose that alignment of individual genetic variations with endophenotypes obtained from mice and across categories of neuropsychiatric disorders will provide an important step in translational research.
Collapse
Affiliation(s)
- Martien J H Kas
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
48
|
Gupta M, Chauhan C, Bhatnagar P, Gupta S, Grover S, Singh PK, Purushottam M, Mukherjee O, Jain S, Brahmachari SK, Kukreti R. Genetic susceptibility to schizophrenia: role of dopaminergic pathway gene polymorphisms. Pharmacogenomics 2009; 10:277-91. [DOI: 10.2217/14622416.10.2.277] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We investigated 16 polymorphisms from three genes, dopamine receptor D2 (DRD2), catechol-O-methyl transferase (COMT) and brain derived neurotrophic factor (BDNF), which are involved in the dopaminergic pathways, and have been reported to be associated with susceptibility to schizophrenia and response to antipsychotic therapy. Materials & methods: Single-locus association analyses of these polymorphisms were carried out in 254 patients with schizophrenia and 225 controls, all of southern Indian origin. Additionally, multifactor-dimensionality reduction analysis was performed in 422 samples (243 cases and 179 controls) to examine the gene–gene interactions and to identify combinations of multilocus genotypes associated with either high or low risk for the disease. Results: Our results demonstrated initial significant associations of two SNPs for DRD2 (rs11608185, genotype: χ2 = 6.29, p-value = 0.043; rs6275, genotype: χ2 = 8.91, p-value = 0.011), and one SNP in the COMT gene (rs4680, genotype: χ2 = 6.67, p-value = 0.035 and allele: χ2 = 4.75, p-value = 0.029; odds ratio: 1.33, 95% confidence interval: 1.02–1.73), but not after correction for multiple comparisons indicating a weak association of individual markers of DRD2 and COMT with schizophrenia. Multifactor-dimensionality reduction analysis suggested a two locus model (rs6275/DRD2 and rs4680/COMT) as the best model for gene–gene interaction with 90% cross-validation consistency and 42.42% prediction error in predicting disease risk among schizophrenia patients. Conclusion: The present study thus emphasizes the need for multigene interaction studies in complex disorders such as schizophrenia and to understand response to drug treatment, which could lead to a targeted and more effective treatment.
Collapse
Affiliation(s)
- Meenal Gupta
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| | - Chitra Chauhan
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| | - Pallav Bhatnagar
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| | - Simone Gupta
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| | - Sandeep Grover
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| | - Prashant K Singh
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| | | | - Odity Mukherjee
- National Institute of Mental Health and Neuro Sciences, India
| | - Sanjeev Jain
- National Institute of Mental Health and Neuro Sciences, India
| | - Samir K Brahmachari
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| | - Ritushree Kukreti
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Mall Road, Delhi 110 007, India
| |
Collapse
|
49
|
Golimbet VE, Korovaitseva GI, Abramova LI, Kasparov SV, Uvarova LG. Association of the Val66Met polymorphism of the brain-derived neurotrophic factor gene with schizophrenia in Russians. Mol Biol 2008. [DOI: 10.1134/s0026893308040079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Abstract
Brain-derived neurotrophic factor (BDNF) has been advanced as a candidate gene for schizophrenia by virtue of its effects on neurotransmitter systems that are dysregulated in psychiatric disorder and its involvement in the response to antipsychotic drugs. The extensively examined BDNF gene Val66Met (or rs6265) variant has been associated with schizophrenia, and studies have linked this polymorphism to brain morphology, cognitive function, and psychiatric symptoms in schizophrenia. Moreover the BDNF Val66Met variant has been reported to be associated with age of onset in schizophrenia. Genotyping of African-American subjects with schizophrenia for five BDNF coding region single nucleotide polymorphisms revealed variance only at the Val66Met allele. The results of statistical analyses indicate a relationship between the BDNF Val66Met genotype and the ages of first psychiatric hospitalization and first schizophrenia symptoms.
Collapse
Affiliation(s)
- Helen M. Chao
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
- New York University Medical Center, New York, New York Helen M. Chao ()
- * Correspondence to Helen M. Chao, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962
| | - Hung-Teh Kao
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
- New York University Medical Center, New York, New York Helen M. Chao ()
| | - Barbara Porton
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
- New York University Medical Center, New York, New York Helen M. Chao ()
| |
Collapse
|