1
|
Brancato A, Castelli V, Cannizzaro C, Tringali G. Adolescent binge-like alcohol exposure dysregulates NPY and CGRP in rats: Behavioural and immunochemical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110699. [PMID: 36565980 DOI: 10.1016/j.pnpbp.2022.110699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Alcohol binge drinking during adolescence impacts affective behaviour, possibly impinging on developing neural substrates processing affective states, including calcitonin gene-related peptide (CGRP) and neuropeptide Y (NPY). Here, we modelled binge-like alcohol exposure in adolescence, by administering 3.5 g/kg alcohol per os, within 1 h, to male adolescent rats every other day, from postnatal day 35 to 54. The effects on positive and negative affective behaviour during abstinence were explored including: consummatory behaviour and weight gain; social behaviour in the modified social interaction test; thermal nociception in the tail-flick test; psychosocial stress coping in the resident-intruder paradigm. Moreover, CGRP and NPY levels were evaluated in functionally relevant brain regions. Our data shows that binge-like intermittent alcohol administration during adolescence decreased weight gain, social preference and motivation, nociception, and active psychosocial stress coping during abstinence. In addition, intermittent alcohol-exposed rats displayed increased expression of CGRP and NPY in the prefrontal cortex and nucleus accumbens; decreased NPY levels in the amygdala; opposite changes in CGRP levels in the hypothalamus and brainstem. Overall, our data shows that adolescent binge-like alcohol exposure, through the allostatic load of alternate intoxication and withdrawal, produces long-term consequences in sensory and affective processes and dysregulated complementary neuropeptidergic systems. Thus, neuropeptide-targeted interventions hold promising potential for addressing negative affect during prolonged withdrawal in young subjects.
Collapse
Affiliation(s)
- Anna Brancato
- University of Palermo, Dept. of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", piazza delle Cliniche 2, 90127 Palermo, Italy.
| | - Valentina Castelli
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, 90127 Palermo, Italy
| | - Carla Cannizzaro
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, 90127 Palermo, Italy
| | - Giuseppe Tringali
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
2
|
Campos EJ, Martins J, Brudzewsky D, Woldbye DPD, Ambrósio AF. Neuropeptide Y system mRNA expression changes in the hippocampus of a type I diabetes rat model. Ann Anat 2019; 227:151419. [PMID: 31563570 DOI: 10.1016/j.aanat.2019.151419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/13/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) plays a crucial role in many neurobiological functions, such as cognition and memory. Cognitive and memory impairment have been described in diabetic patients. The metabolism of NPY is determined by the activity of proteases, primarily dipeptidyl-peptidase-IV (DPP-IV). Therefore, DPP-IV inhibitors, such as sitagliptin, may modulate the function of NPY. In this study, we investigated the effect of type 1 diabetes and sitagliptin treatment on the regulation of the mRNA encoding for NPY and its receptors (Y1, Y2, and Y5 receptors) in the hippocampus. METHODS Type 1 diabetes was induced in male Wistar rats by i.p. injection of streptozotocin. Starting two weeks after diabetes onset, animals were treated orally with sitagliptin (5mg/kg, daily) for two weeks. The mRNA expression of Npy and its receptors (Npy1r, Npy2r, and Npy5r) in the hippocampus was evaluated using in situ hybridization with 33P-labeled oligonucleotides. RESULTS The mRNA expression of Npy, Npy1r and Npy5r was higher in the dentate gyrus, whereas Npy2r highest level was observed in the CA3 subregion. The mRNA expression of Npy, Npy1r and Npy5r in dentate gyrus, CA1 and CA3 was not affected by diabetes and/or by sitagliptin treatment. Type 1 diabetes increased the mRNA expression of Npy2r in the CA3 subregion, which was prevented by sitagliptin treatment. CONCLUSIONS Our results show that type 1 diabetes, at early stages, induces mild changes in the NPY system in the hippocampus that were counteracted by sitagliptin treatment.
Collapse
Affiliation(s)
- Elisa J Campos
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - João Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Dan Brudzewsky
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - David P D Woldbye
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
3
|
Brancato A, Lavanco G, Cavallaro A, Plescia F, Cannizzaro C. Acetaldehyde, Motivation and Stress: Behavioral Evidence of an Addictive ménage à trois. Front Behav Neurosci 2017; 11:23. [PMID: 28232795 PMCID: PMC5299001 DOI: 10.3389/fnbeh.2017.00023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/27/2017] [Indexed: 11/13/2022] Open
Abstract
Acetaldehyde (ACD) contributes to alcohol's psychoactive effects through its own rewarding properties. Recent studies shed light on the behavioral correlates of ACD administration and the possible interactions with key neurotransmitters for motivation, reward and stress-related response, such as dopamine and endocannabinoids. This mini review article critically examines ACD psychoactive properties, focusing on behavioral investigations able to unveil ACD motivational effects and their pharmacological modulation in vivo. Similarly to alcohol, rats spontaneously drink ACD, whose presence is detected in the brain following chronic self-administration paradigm. ACD motivational properties are demonstrated by operant paradigms tailored to model several drug-related behaviors, such as induction and maintenance of operant self-administration, extinction, relapse and punishment resistance. ACD-related addictive-like behaviors are sensitive to pharmacological manipulations of dopamine and endocannabinoid signaling. Interestingly, the ACD-dopamine-endocannabinoids relationship also contributes to neuroplastic alterations of the NPYergic system, a stress-related peptide critically involved in alcohol abuse. The understanding of the ménage-a-trois among ACD, reward- and stress-related circuits holds promising potential for the development of novel pharmacological approaches aimed at reducing alcohol abuse.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo Palermo, Italy
| | - Gianluca Lavanco
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo Palermo, Italy
| | - Angela Cavallaro
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo Palermo, Italy
| | - Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo Palermo, Italy
| |
Collapse
|
4
|
Qiu B, Bell RL, Cao Y, Zhang L, Stewart RB, Graves T, Lumeng L, Yong W, Liang T. Npy deletion in an alcohol non-preferring rat model elicits differential effects on alcohol consumption and body weight. J Genet Genomics 2016; 43:421-30. [PMID: 27461754 PMCID: PMC5055068 DOI: 10.1016/j.jgg.2016.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 04/21/2016] [Accepted: 04/27/2016] [Indexed: 11/21/2022]
Abstract
Neuropeptide Y (NPY) is widely expressed in the central nervous system and influences many physiological processes. It is located within the rat quantitative trait locus (QTL) for alcohol preference on chromosome 4. Alcohol-nonpreferring (NP) rats consume very little alcohol, but have significantly higher NPY expression in the brain than alcohol-preferring (P) rats. We capitalized on this phenotypic difference by creating an Npy knockout (KO) rat using the inbred NP background to evaluate NPY effects on alcohol consumption. Zinc finger nuclease (ZNF) technology was applied, resulting in a 26-bp deletion in the Npy gene. RT-PCR, Western blotting and immunohistochemistry confirmed the absence of Npy mRNA and protein in KO rats. Alcohol consumption was increased in Npy(+/-) but not Npy(-/-) rats, while Npy(-/-) rats displayed significantly lower body weight when compared to Npy(+/+) rats. In whole brain tissue, expression levels of Npy-related and other alcohol-associated genes, Npy1r, Npy2r, Npy5r, Agrp, Mc3r, Mc4r, Crh and Crh1r, were significantly greater in Npy(-/-) rats, whereas Pomc and Crhr2 expressions were highest in Npy(+/-) rats. These findings suggest that the NPY-system works in close coordination with the melanocortin (MC) and corticotropin-releasing hormone (CRH) systems to modulate alcohol intake and body weight.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yong Cao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China; Experimental Medicine Center, The First Affiliated Hospital of Sichuan Medical University, Luzhou 646000, China
| | - Lingling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Robert B Stewart
- Department of Psychology, Purdue School of Science, Indiana University-Purdue University of Indianapolis, Indianapolis, IN 46202, USA
| | - Tamara Graves
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lawrence Lumeng
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weidong Yong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | - Tiebing Liang
- Department of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
5
|
Plescia F, Brancato A, Marino RAM, Vita C, Navarra M, Cannizzaro C. Effect of Acetaldehyde Intoxication and Withdrawal on NPY Expression: Focus on Endocannabinoidergic System Involvement. Front Psychiatry 2014; 5:138. [PMID: 25324788 PMCID: PMC4181239 DOI: 10.3389/fpsyt.2014.00138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/18/2014] [Indexed: 01/17/2023] Open
Abstract
Acetaldehyde (ACD), the first alcohol metabolite, plays a pivotal role in the rewarding, motivational, and addictive properties of the parental compound. Many studies have investigated the role of ACD in mediating neurochemical and behavioral effects induced by alcohol administration, but very little is known about the modulation of neuropeptide systems following ACD intoxication and withdrawal. Indeed, the neuropeptide Y (NPY) system is altered during alcohol withdrawal in key regions for cerebrocortical excitability and neuroplasticity. The primary goal of this research was to investigate the effects of ACD intoxication and withdrawal by recording rat behavior and by measuring NPY immunoreactivity in hippocampus and NAcc, two brain regions mainly involved in processes which encompass neuroplasticity in alcohol dependence. Furthermore, on the basis of the involvement of endocannabinoidergic system in alcohol and ACD reinforcing effects, the role of the selective CB1 receptor antagonist AM281 in modulating NPY expression during withdrawal was assessed. Our results indicate that (i) ACD intoxication induced a reduction in NPY expression in hippocampus and NAcc; (ii) symptoms of physical dependence, similar to alcohol's, were scored at 12 h from the last administration of ACD; and (iii) NPY levels increased in early and prolonged acute withdrawal in both brain regions examined. The administration of AM281 was able to blunt signs of ACD-induced physical dependence, to modulate NPY levels, and to further increase NPY expression during ACD withdrawal both in hippocampus and NAcc. In conclusion, the present study shows that complex plastic changes take place in NPY system during ACD intoxication and subsequent withdrawal in rat hippocampal formation and NAcc. The pharmacological inhibition of CB1 signaling could counteract the neurochemical imbalance associated with ACD, and alcohol withdrawal, likely boosting the setting up of homeostatic functional recovery.
Collapse
Affiliation(s)
- Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Rosa Anna Maria Marino
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Carlotta Vita
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Michele Navarra
- Department of Drug Sciences and Products for Health, University of Messina , Messina , Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| |
Collapse
|
6
|
Gonçalves J, Ribeiro CF, Malva JO, Silva AP. Protective role of neuropeptide Y Y2receptors in cell death and microglial response following methamphetamine injury. Eur J Neurosci 2012; 36:3173-83. [DOI: 10.1111/j.1460-9568.2012.08232.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Xu K, Hong KA, Zhou Z, Hauger RL, Goldman D, Sinha R. Genetic modulation of plasma NPY stress response is suppressed in substance abuse: association with clinical outcomes. Psychoneuroendocrinology 2012; 37:554-64. [PMID: 21917383 PMCID: PMC3252459 DOI: 10.1016/j.psyneuen.2011.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/08/2011] [Accepted: 08/15/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) is involved in stress regulation. Genetic variations predict plasma NPY and neural correlates of emotion and stress. We examined whether the functional NPY haplotype modulates stress-induced NPY and anxiety responses, and if plasma NPY stress responses are associated with substance dependence outcomes. METHODS Thirty-seven treatment-engaged, abstinent substance dependent (SD) patients and 28 healthy controls (HCs) characterized on NPY diplotypes (HH: high expression; HLLL: intermediate/low expression) were exposed to stress, alcohol/drug cues and neutral relaxing cues, using individualized guided imagery, in a 3-session laboratory experiment. Plasma NPY, heart rate and anxiety were assessed. Patients were prospectively followed for 90-days post-treatment to assess relapse outcomes. RESULTS HH individuals showed significantly lower stress-induced NPY with greater heart rate and anxiety ratings, while the HLLL group showed the reverse pattern of NPY, anxiety and heart rate responses. This differential genetic modulation of NPY stress response was suppressed in the SD group, who showed no stress-related increases in NPY and higher heart rate and greater anxiety, regardless of diplotype. Lower NPY predicted subsequent higher number of days and greater amounts of post-treatment drug use. CONCLUSION These preliminary findings are the first to document chronic drug abuse influences on NPY diplotype expression where NPY diplotype modulation of stress-related plasma NPY, heart rate and anxiety responses was absent in the substance abuse sample. The finding that lower stress-related NPY is predictive of greater relapse severity provides support for therapeutic development of neuropeptide Y targets in the treatment of substance use disorders.
Collapse
Affiliation(s)
- Ke Xu
- Department of Psychiatry, School of Medicine, Yale University
| | | | - Zhifeng Zhou
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health
| | - Richard L Hauger
- VA Healthcare System and Department of Psychiatry, University of California at San Diego
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health
| | - Rajita Sinha
- Department of Psychiatry, School of Medicine, Yale University,Yale Child Study Center, New Haven, CT 06519
| |
Collapse
|
8
|
Cippitelli A, Rezvani AH, Robinson JE, Eisenberg L, Levin ED, Bonaventure P, Motley ST, Lovenberg TW, Heilig M, Thorsell A. The novel, selective, brain-penetrant neuropeptide Y Y2 receptor antagonist, JNJ-31020028, tested in animal models of alcohol consumption, relapse, and anxiety. Alcohol 2011; 45:567-76. [PMID: 21145691 DOI: 10.1016/j.alcohol.2010.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/02/2010] [Accepted: 09/27/2010] [Indexed: 11/29/2022]
Abstract
Neuropeptide Y (NPY) signaling has been shown to modulate stress responses and to be involved in regulation of alcohol intake and dependence. The present study explores the possibility that blockade of NPY Y2 autoreceptors using a novel, blood-brain barrier penetrant NPY Y2 receptor antagonist, JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), may achieve a therapeutically useful activation of the NPY system in alcohol- and anxiety-related behavioral models. We examined JNJ-31020028 in operant alcohol self-administration, stress-induced reinstatement to alcohol seeking, and acute alcohol withdrawal (hangover)-induced anxiety. Furthermore, we tested its effects on voluntary alcohol consumption in a genetic animal model of alcohol preference, the alcohol-preferring (P) rat. Neither systemic (0, 15, 30, and 40 mg/kg, subcutaneously [s.c.]) nor intracerebroventricular (0.0, 0.3, and 1.0 nmol/rat) administration of JNJ-31020028 affected alcohol-reinforced lever pressing or relapse to alcohol seeking behavior following stress exposure. Also, when its effects were tested on unlimited access to alcohol in P rats, preference for alcohol solution was transiently suppressed but without affecting voluntary alcohol intake. JNJ-31020028 (15 mg/kg, s.c.) did reverse the anxiogenic effects of withdrawal from a single bolus dose of alcohol on the elevated plus-maze, confirming the anxiolytic-like properties of NPY Y2 antagonism. Our data do not support Y2 antagonism as a mechanism for reducing alcohol consumption or relapse-like behavior, but the observed effects on withdrawal-induced anxiety suggest that NPY Y2 receptor antagonists may be a putative treatment for the negative affective states following alcohol withdrawal.
Collapse
Affiliation(s)
- Andrea Cippitelli
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Francès F, Guillen M, Verdú F, Portolés O, Castelló A, Sorlí J, Corella D. The 1258 G>A polymorphism in the neuropeptide Y gene is associated with greater alcohol consumption in a Mediterranean population. Alcohol 2011; 45:131-6. [PMID: 21303710 DOI: 10.1016/j.alcohol.2010.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 11/25/2022]
Abstract
Neuropeptide Y (NPY) is a neurotransmitter widely distributed in the central nervous system. Several studies have demonstrated that increases of NPY are associated with reduced alcohol intake and anxiety manifestations. The Leu7Pro polymorphism in the NPY has been associated with alcohol consumption, but evidence is scarce. In the Spanish Mediterranean population, this variant is not polymorphic. Thus, our aim is to identify novel functional variants in the NPY and to investigate the impact of these markers and others previously described on alcohol consumption in this population. A total of 911 subjects (321 men and 590 women) from the Spanish Mediterranean population were recruited. Alcohol consumption, and demographic and lifestyle variables were measured. Nucleotide sequence determination and SNP analyses were carried out. Only one exonic SNP was detected by direct sequencing (1258 G>A or rs9785023; allele frequency 0.47). From the intronic markers chosen (483 A>G or rs13235938, 2517 A>G or rs4722342, and 7065 A>G or rs4722343), only the two latter ones were polymorphic (allele frequencies 0.46 and 0.04, respectively), and none of them were associated with alcohol consumption. However, the 1258 G>A SNP was associated (recessive pattern) with higher alcohol intake. This association was particularly relevant in men with high alcohol intake (59.1±5.0 g/day in AA as opposed to 40.6±7.5 in the G carriers, P=.022) and women with moderate alcohol intake (7.3±5.5 g/day in AA as opposed to 4.6±3.9g/day in G carriers, P=.048). The 1258 G>A polymorphism in the NPY is associated with higher alcohol consumption in the Mediterranean population.
Collapse
|
10
|
Olling JD, Ulrichsen J, Correll M, Woldbye DPD. Gene expression in the neuropeptide Y system during ethanol withdrawal kindling in rats. Alcohol Clin Exp Res 2009; 34:462-70. [PMID: 20028355 DOI: 10.1111/j.1530-0277.2009.01110.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Multiple episodes of ethanol intoxication and withdrawal result in progressive, irreversible intensification of the withdrawal reaction, a process termed "ethanol withdrawal kindling." Previous studies show that a single episode of chronic ethanol intoxication and withdrawal causes prominent changes in neuropeptide Y (NPY) and its receptors that have been implicated in regulating withdrawal hyperexcitability. This study for the first time examined the NPY system during ethanol withdrawal kindling. METHODS Ethanol withdrawal kindling was studied in rats receiving 16 episodes of 2 days of chronic ethanol intoxication by intragastric intubations followed by 5 days withdrawal. The study included 6 groups: 4 multiple withdrawal episode (MW) groups [peak withdrawal plus (MW+)/minus (MW-) seizures, 3-day (MW3d), and 1-month (MW1mth) withdrawal], a single withdrawal episode group (SW), and an isocalorically fed control group. Gene expression of NPY and its receptors Y1, Y2, and Y5 was studied in the hippocampal dentate gyrus (DG) and CA3/CA1, as well as piriform cortex (PirCx), and neocortex (NeoCx). RESULTS MW+/- as well as SW groups showed decreased NPY gene expression in all hippocampal areas compared with controls, but, in the DG and CA3, decreases were significantly smaller in the MW- group compared with the SW group. In the MW+/- and SW groups, Y1, Y2, and Y5 mRNA levels were decreased in most brain areas compared with controls; however, decreases in Y1 and Y5 mRNA were augmented in the MW+/- groups compared with the SW group. The MW+ group differed from the MW- group in the PirCx, where Y2 gene expression was significantly higher. CONCLUSION Multiple withdrawal episodes reversibly decreased NPY and NPY receptor mRNA levels at peak withdrawal, with smaller decreases in NPY mRNA levels and augmented decreases in Y1/Y5 mRNA levels compared with a SW episode. Multiple withdrawal-induced seizures increased the Y2 mRNA levels in PirCx. These complex changes in NPY system gene expression could play a role in the ethanol withdrawal kindling process.
Collapse
Affiliation(s)
- Janne D Olling
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen & University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | | |
Collapse
|
11
|
Olling JD, Ulrichsen J, Christensen DZ, Woldbye DPD. Complex plastic changes in the neuropeptide Y system during ethanol intoxication and withdrawal in the rat brain. J Neurosci Res 2009; 87:2386-97. [PMID: 19267419 DOI: 10.1002/jnr.22049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies show that chronic ethanol treatment induces prominent changes in brain neuropeptide Y (NPY). The purpose of the present study was to explore ethanol effects at a deeper NPY-system level, measuring expression of NPY and its receptors (Y1, Y2, Y5) as well as NPY receptor binding and NPY-stimulated [(35)S]GTPgammaS functional binding. Rats received intragastric ethanol repeatedly for 4 days, and the NPY system was studied in the hippocampal dentate gyrus (DG), CA3, CA1, and piriform cortex (PirCx) and neocortex (NeoCx) during intoxication, peak withdrawal (16 hr), late withdrawal (3 days), and 1 week after last ethanol administration. NPY mRNA levels decreased during intoxication and at 16 hr in hippocampal regions but increased in the PirCx and NeoCx at 16 hr. NPY mRNA levels were increased at 3 days and returned to control levels in most regions at 1 week. Substantial changes also occurred at the receptor level. Thus Y1, Y2, and Y5 mRNA labelling decreased at 16 hr in most regions, returning to control levels at 3 days, except for PirCx Y2 mRNA, which increased at 3 days and 1 week. Conversely, increases in NPY receptor binding occurred in hippocampal regions during intoxication and in functional binding in the DG and NeoCx during intoxication and at 16 hr and in PirCx during intoxication and at 1 week. Thus this study shows that ethanol intoxication and withdrawal induce complex plastic changes in the NPY system, with decreased/increased gene expression or binding occurring in a time- and region-specific manner. These changes may play an important role in mediating ethanol-induced changes in neuronal excitability.
Collapse
Affiliation(s)
- J D Olling
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology, University of Copenhagen and University Hospital Rigshospitalet 6102, Copenhagen, Denmark
| | | | | | | |
Collapse
|
12
|
Sørensen G, Wegener G, Hasselstrøm J, Hansen TV, Wörtwein G, Fink-Jensen A, Woldbye DP. Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine. Neuroreport 2009; 20:1023-6. [DOI: 10.1097/wnr.0b013e32832d4848] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|