1
|
Kratimenos P, Goldstein EZ, Koutroulis I, Knoblach S, Jablonska B, Banerjee P, Malaeb SN, Bhattacharya S, Almira-Suarez MI, Gallo V, Delivoria-Papadopoulos M. Epidermal Growth Factor Receptor Inhibition Reverses Cellular and Transcriptomic Alterations Induced by Hypoxia in the Neonatal Piglet Brain. iScience 2020; 23:101766. [PMID: 33294779 PMCID: PMC7683340 DOI: 10.1016/j.isci.2020.101766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 02/04/2023] Open
Abstract
Acute hypoxia (HX) causes extensive cellular damage in the developing human cerebral cortex. We found increased expression of activated-EGFR in affected cortical areas of neonates with HX and investigated its functional role in the piglet, which displays a highly evolved, gyrencephalic brain, with a human-like maturation pattern. In the piglet, HX-induced activation of EGFR and Ca2+/calmodulin kinase IV (CaMKIV) caused cell death and pathological alterations in neurons and glia. EGFR blockade inhibited CaMKIV activation, attenuated neuronal loss, increased oligodendrocyte proliferation, and reversed HX-induced astrogliosis. We performed for the first time high-throughput transcriptomic analysis of the piglet cortex to define molecular responses to HX and to uncover genes specifically involved in EGFR signaling in piglet and human brain injury. Our results indicate that specific molecular responses modulated by EGFR may be targeted as a therapeutic strategy for HX injury in the neonatal brain.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
- Department of Pediatrics, Division of Neonatology, Children's National Hospital and George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-602-4889, USA
- Corresponding author
| | - Evan Z. Goldstein
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
| | - Ioannis Koutroulis
- Department of Pediatrics, Division of Emergency Medicine, Children's National Hospital and George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Susan Knoblach
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Beata Jablonska
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
| | - Payal Banerjee
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
| | - Shadi N. Malaeb
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Surajit Bhattacharya
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
| | - M. Isabel Almira-Suarez
- Department of Pathology, Children's National Hospital and George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
- Corresponding author
| | | |
Collapse
|
2
|
Pattinson R, Kerber K, Waiswa P, Day LT, Mussell F, Asiruddin SK, Blencowe H, Lawn JE. Perinatal mortality audit: counting, accountability, and overcoming challenges in scaling up in low- and middle-income countries. Int J Gynaecol Obstet 2010; 107 Suppl 1:S113-21, S121-2. [PMID: 19815206 DOI: 10.1016/j.ijgo.2009.07.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND In high-income countries, national mortality audits are associated with improved quality of care, but there has been no previous systematic review of perinatal audit in low- and middle-income settings. OBJECTIVES To present a systematic review of facility-based perinatal mortality audit in low- and middle-income countries, and review information regarding community audit. RESULTS Ten low-quality evaluations with mortality outcome data were identified. Meta-analysis of 7 before-and-after studies indicated a reduction in perinatal mortality of 30% (95% confidence interval, 21%-38%) after introduction of perinatal audit. The consistency of effect suggests that audit may be a useful tool for decreasing perinatal mortality rates in facilities and improving quality of care, although none of these evaluations were large scale. Few of the identified studies reported intrapartum-related perinatal outcomes. Novel experience of community audit and social autopsy is described, but data reporting mortality outcome effect are lacking. There are few examples of wide-scale, sustained perinatal audit in low-income settings. Two national cases studies (South Africa and Bangladesh) are presented. Programmatic decision points, challenges, and key factors for national or wide scale-up of sustained perinatal mortality audit are discussed. As a minimum standard, facilities should track intrapartum stillbirth and pre-discharge intrapartum-related neonatal mortality rates. CONCLUSION The effect of perinatal audit depends on the ability to close the audit loop; without effectively implementing the solutions to the problems identified, audit alone cannot improve quality of care.
Collapse
Affiliation(s)
- Robert Pattinson
- MRC Maternal and Infant Health Care Strategies Research Unit, University of Pretoria, Pretoria, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|