1
|
Lachén-Montes M, Cartas-Cejudo P, Cortés A, Anaya-Cubero E, Peral E, Ausín K, Díaz-Peña R, Fernández-Irigoyen J, Santamaría E. Involvement of Glucosamine 6 Phosphate Isomerase 2 (GNPDA2) Overproduction in β-Amyloid- and Tau P301L-Driven Pathomechanisms. Biomolecules 2024; 14:394. [PMID: 38672412 PMCID: PMC11048700 DOI: 10.3390/biom14040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative olfactory disorder affecting millions of people worldwide. Alterations in the hexosamine- or glucose-related pathways have been described through AD progression. Specifically, an alteration in glucosamine 6 phosphate isomerase 2 (GNPDA2) protein levels has been observed in olfactory areas of AD subjects. However, the biological role of GNPDA2 in neurodegeneration remains unknown. Using mass spectrometry, multiple GNPDA2 interactors were identified in human nasal epithelial cells (NECs) mainly involved in intraciliary transport. Moreover, GNPDA2 overexpression induced an increment in NEC proliferation rates, accompanied by transcriptomic alterations in Type II interferon signaling or cellular stress responses. In contrast, the presence of beta-amyloid or mutated Tau-P301L in GNPDA2-overexpressing NECs induced a slowdown in the proliferative capacity in parallel with a disruption in protein processing. The proteomic characterization of Tau-P301L transgenic zebrafish embryos demonstrated that GNPDA2 overexpression interfered with collagen biosynthesis and RNA/protein processing, without inducing additional changes in axonal outgrowth defects or neuronal cell death. In humans, a significant increase in serum GNPDA2 levels was observed across multiple neurological proteinopathies (AD, Lewy body dementia, progressive supranuclear palsy, mixed dementia and amyotrophic lateral sclerosis) (n = 215). These data shed new light on GNPDA2-dependent mechanisms associated with the neurodegenerative process beyond the hexosamine route.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), IdiSNA, Navarra Institute for Health Research, Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (M.L.-M.); (P.C.-C.); (A.C.); (E.A.-C.); (E.P.); (K.A.); (R.D.-P.); (J.F.-I.)
| |
Collapse
|
2
|
Bronchain O, Philippe-Caraty L, Anquetil V, Ciapa B. Precise regulation of presenilin expression is required for sea urchin early development. J Cell Sci 2021; 134:jcs258382. [PMID: 34313316 DOI: 10.1242/jcs.258382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
Presenilins (PSENs) are widely expressed across eukaryotes. Two PSENs are expressed in humans, where they play a crucial role in Alzheimer's disease (AD). Each PSEN can be part of the γ-secretase complex, which has multiple substrates, including Notch and amyloid-β precursor protein (AβPP) - the source of amyloid-β (Aβ) peptides that compose the senile plaques during AD. PSENs also interact with various proteins independently of their γ-secretase activity. They can then be involved in numerous cellular functions, which makes their role in a given cell and/or organism complex to decipher. We have established the Paracentrotus lividus sea urchin embryo as a new model to study the role of PSEN. In the sea urchin embryo, the PSEN gene is present in unduplicated form and encodes a protein highly similar to human PSENs. Our results suggest that PSEN expression must be precisely tuned to control the course of the first mitotic cycles and the associated intracellular Ca2+ transients, the execution of gastrulation and, probably in association with ciliated cells, the establishment of the pluteus. We suggest that it would be relevant to study the role of PSEN within the gene regulatory network deciphered in the sea urchin.
Collapse
Affiliation(s)
- Odile Bronchain
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Laetitia Philippe-Caraty
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Vincent Anquetil
- Sorbonne Université, Inserm U1127, CNRS UMR 7225, Institut du Cerveau (ICM), F-75013, Paris, France
| | - Brigitte Ciapa
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
3
|
Mishra D, Dey CS. PKCα: Prospects in Regulating Insulin Resistance and AD. Trends Endocrinol Metab 2021; 32:341-350. [PMID: 33858742 DOI: 10.1016/j.tem.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Protein kinase C alpha (PKCα) is known to participate in various signaling pathways due to its ubiquitous and dynamic characteristics. Previous studies report that PKCα abrogates peripheral insulin resistance, and recent publications show that it takes part in regulating Alzheimer's disease (AD). Based on evidence in the literature, we have highlighted how many of the substrates of PKCα in its signal transduction cascades are common in AD and diabetes and may have the capability to regulate both diseases simultaneously. Signaling pathways crosslinking these two diseases by PKCα have not been explored. Understanding the complexities of PKCα interactions with common molecules will deepen our understanding of its regulation of relevant pathophysiologies and, in the future, may broaden the possibility of using PKCα as a therapeutic target.
Collapse
Affiliation(s)
- Devanshi Mishra
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India.
| |
Collapse
|
4
|
Lachén-Montes M, González-Morales A, Zelaya MV, Pérez-Valderrama E, Ausín K, Ferrer I, Fernández-Irigoyen J, Santamaría E. Olfactory bulb neuroproteomics reveals a chronological perturbation of survival routes and a disruption of prohibitin complex during Alzheimer's disease progression. Sci Rep 2017; 7:9115. [PMID: 28831118 PMCID: PMC5567385 DOI: 10.1038/s41598-017-09481-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/26/2017] [Indexed: 12/31/2022] Open
Abstract
Olfactory dysfunction is among the earliest features of Alzheimer’s disease (AD). Although neuropathological abnormalities have been detected in the olfactory bulb (OB), little is known about its dynamic biology. Here, OB- proteome analysis showed a stage-dependent synaptic proteostasis impairment during AD evolution. In addition to progressive modulation of tau and amyloid precursor protein (APP) interactomes, network-driven proteomics revealed an early disruption of upstream and downstream p38 MAPK pathway and a subsequent impairment of Phosphoinositide-dependent protein kinase 1 (PDK1)/Protein kinase C (PKC) signaling axis in the OB from AD subjects. Moreover, a mitochondrial imbalance was evidenced by a depletion of Prohibitin-2 (Phb2) levels and a specific decrease in the phosphorylated isoforms of Phb1 in intermediate and advanced AD stages. Interestingly, olfactory Phb subunits were also deregulated across different types of dementia. Phb2 showed a specific up-regulation in mixed dementia, while Phb1 isoforms were down-regulated in frontotemporal lobar degeneration (FTLD). However, no differences were observed in the olfactory expression of Phb subunits in progressive supranuclear palsy (PSP). To sum up, our data reflect, in part, the missing links in the biochemical understanding of olfactory dysfunction in AD, unveiling Phb complex as a differential driver of neurodegeneration at olfactory level.
Collapse
Affiliation(s)
- Mercedes Lachén-Montes
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Andrea González-Morales
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - María Victoria Zelaya
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.,IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Pathological Anatomy Department, Navarra Hospital Complex, Pamplona, Spain
| | - Estela Pérez-Valderrama
- Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Karina Ausín
- Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.,IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain. .,IDISNA, Navarra Institute for Health Research, Pamplona, Spain. .,Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.
| |
Collapse
|
5
|
An early dysregulation of FAK and MEK/ERK signaling pathways precedes the β-amyloid deposition in the olfactory bulb of APP/PS1 mouse model of Alzheimer's disease. J Proteomics 2016; 148:149-58. [PMID: 27498392 DOI: 10.1016/j.jprot.2016.07.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/28/2016] [Accepted: 07/31/2016] [Indexed: 01/25/2023]
Abstract
UNLABELLED Olfactory dysfunction is an early event of Alzheimer's disease (AD). However, the mechanisms associated to AD neurodegeneration in olfactory areas are unknown. Here we used double-transgenic amyloid precursor protein/presenilin 1 (APPswe/PS1dE9) mice and label-free quantitative proteomics to analyze early pathological effects on the olfactory bulb (OB) during AD progression. Prior to β-amyloid plaque formation, 9 modulated proteins were detected on 3-month-old APP/PS1 mice while 16 differential expressed proteins were detected at 6months, when β-amyloid plaques appear, indicating a moderate imbalance in cytoskeletal rearrangement, and synaptic plasticity in APP/PS1 OBs. Moreover, β-amyloid induced an inactivation of focal adhesion kinase (FAK) together with a transient activation of MEK1/2, leading to inactivation of ERK1/2 in 6-months APP/PS1 OBs. In contrast, the analysis of human OBs revealed a late activation of FAK in advanced AD stages, whereas ERK1/2 activation was enhanced across AD staging respect to controls. This survival potential was accompanied by the inhibition of the proapototic factor BAD in the OB across AD phenotypes. Our data contribute to a better understanding of the early molecular mechanisms that are modulated in AD neurodegeneration, highlighting significant differences in the regulation of survival pathways between APP/PS1 mice and sporadic human AD. SIGNIFICANCE Loss of smell is involved in early stages of Alzheimer's disease (AD), usually preceding classic disease symptoms. However, the mechanisms governing this dysfunction are still poorly understood, losing its potential as a useful tool for clinical diagnosis. Our study characterizes potential AD-associated molecular changes in APP/PS1 mice olfactory bulb (OB) using MS-quantitative proteomics, revealing early cytoskeletal disruption and synaptic plasticity impairment. Moreover, an opposite pattern was found when comparing the activation status of specific survival pathways between APP/PS1 OBs and OBs derived from sAD subjects with different neuropathological grading. Our data reflect, in part, the progressive effect of APP overproduction and Aβ accumulation on the OB proteome during AD progression.
Collapse
|
6
|
The Interplay of Akt and ERK in Aβ Toxicity and Insulin-Mediated Protection in Primary Hippocampal Cell Culture. J Mol Neurosci 2015; 57:325-34. [PMID: 26266487 DOI: 10.1007/s12031-015-0622-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/14/2015] [Indexed: 01/11/2023]
Abstract
It is not known if insulin prevents Aβ-induced cell death, MAPK, and Akt activity in isolated hippocampal cell culture. This study was aimed to explore the effect of insulin on Aβ-induced cell death and ERK and Akt signaling alteration in isolated hippocampal cell culture. Additionally, it was desirable to assess if there is any interaction between these two pathways. The hippocampal cells were derived from fetuses at the embryonic day 18-19. The cells were treated with different drugs, and MTT assay, morphological assessments, and Western blot were done. Insulin prevented Aβ-induced cell death and caspase-3 cleavage. Aβ-induced toxicity was aligned with decrement of the phosphorylated Akt (pAkt) which was prevented by insulin. The PI3 kinase inhibitor, LY294002, decreased pAkt and abolished the protective effect of insulin. Aβ exposure increased phosphorylated ERK (pERK) in parallel with cell death and apoptosis. Insulin-inhibited ERK activation (phosphorylation) induced by Aβ and PD98059 (as ERK inhibitor) did not affect the protective effect of insulin. One of the interesting finding of this study was the interplay of Akt and ERK in Aβ toxicity and insulin-mediated protection; meaning that there is an inverse relation between pERK and pAkt, in a way that PI3-Akt pathway inhibition leads to pERK increment while ERK inhibition causes Akt phosphorylation (activation). This study showed, for the first time, that insulin protects against Aβ toxicity in isolated hippocampal cell culture via modulating Akt and ERK phosphorylation and also revealed an interaction between those signals in Aβ toxicity and insulin-mediated protection.
Collapse
|
7
|
Van Dooren T, Princen K, De Witte K, Griffioen G. Derailed intraneuronal signalling drives pathogenesis in sporadic and familial Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:167024. [PMID: 25243118 PMCID: PMC4160617 DOI: 10.1155/2014/167024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/31/2014] [Accepted: 08/03/2014] [Indexed: 02/01/2023]
Abstract
Although a wide variety of genetic and nongenetic Alzheimer's disease (AD) risk factors have been identified, their role in onset and/or progression of neuronal degeneration remains elusive. Systematic analysis of AD risk factors revealed that perturbations of intraneuronal signalling pathways comprise a common mechanistic denominator in both familial and sporadic AD and that such alterations lead to increases in Aβ oligomers (Aβo) formation and phosphorylation of TAU. Conversely, Aβo and TAU impact intracellular signalling directly. This feature entails binding of Aβo to membrane receptors, whereas TAU functionally interacts with downstream transducers. Accordingly, we postulate a positive feedback mechanism in which AD risk factors or genes trigger perturbations of intraneuronal signalling leading to enhanced Aβo formation and TAU phosphorylation which in turn further derange signalling. Ultimately intraneuronal signalling becomes deregulated to the extent that neuronal function and survival cannot be sustained, whereas the resulting elevated levels of amyloidogenic Aβo and phosphorylated TAU species self-polymerizes into the AD plaques and tangles, respectively.
Collapse
|
8
|
Ghasemi R, Zarifkar A, Rastegar K, Maghsoudi N, Moosavi M. Repeated intra-hippocampal injection of beta-amyloid 25–35 induces a reproducible impairment of learning and memory: Considering caspase-3 and MAPKs activity. Eur J Pharmacol 2014; 726:33-40. [DOI: 10.1016/j.ejphar.2013.11.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 12/29/2022]
|
9
|
Crosstalk Between Insulin and Toll-like Receptor Signaling Pathways in the Central Nervous system. Mol Neurobiol 2014; 50:797-810. [DOI: 10.1007/s12035-013-8631-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/25/2013] [Indexed: 01/04/2023]
|
10
|
Jiang Q, Wang L, Guan Y, Xu H, Niu Y, Han L, Wei YP, Lin L, Chu J, Wang Q, Yang Y, Pei L, Wang JZ, Tian Q. Golgin-84-associated Golgi fragmentation triggers tau hyperphosphorylation by activation of cyclin-dependent kinase-5 and extracellular signal-regulated kinase. Neurobiol Aging 2013; 35:1352-63. [PMID: 24368089 DOI: 10.1016/j.neurobiolaging.2013.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 09/23/2013] [Accepted: 11/24/2013] [Indexed: 12/16/2022]
Abstract
Tau hyperphosphorylation is a critical event in Alzheimer's disease, in which the neuronal Golgi fragmentation occurs earlier than tau hyperphosphorylation. However, the intrinsic link between Golgi impairment and tau pathology is missing. By electron microscopy and western blotting, we observed in the present study that the neuronal Golgi fragmentation was increased age-dependently with a correlated tau hyperphosphorylation in the brains of C57BL/6 mice aged from 4 to 16 months. Simultaneously, golgin-84 and Golgi reassembly stacking protein 65, 2 important Golgi matrix proteins, were decreased in the brains of elder mice. Further studies in HEK293/tau cells showed that Golgi-disturbing agents, brefeldin A and nocodazole induced tau hyperphosphorylation. Knockdown of golgin-84, not Golgi reassembly stacking protein 65, by small interfering RNA was sufficient to induce tau hyperphosphorylation, while over-expressing golgin-84 arrested the brefeldin A-induced Golgi fragmentation and tau hyperphosphorylation. Finally, we demonstrated that cyclin-dependent kinase-5 and extracellular signal-regulated kinase were activated after golgin-84 knockdown, and simultaneous inhibition of these kinases abolished the golgin-84 deficit-induced tau hyperphosphorylation. These data suggest Golgi fragmentation could be an upstream event triggering tau hyperphosphorylation through golgin-84 deficit-induced activation of cyclin-dependent kinase-5 and extracellular signal-regulated kinase.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Pathology and Pathophysiology, Ultrastructural Pathology Center, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Present address: Department of Dermatology, The First Hospital of Wuhan, Wuhan, China
| | - Lu Wang
- Department of Pathology and Pathophysiology, Ultrastructural Pathology Center, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Guan
- Department of Pathology and Pathophysiology, Ultrastructural Pathology Center, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xu
- Department of Pathology and Pathophysiology, Ultrastructural Pathology Center, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Niu
- Department of Pathology and Pathophysiology, Ultrastructural Pathology Center, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Han
- Department of Pathology and Pathophysiology, Ultrastructural Pathology Center, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ping Wei
- Department of Pathology and Pathophysiology, Ultrastructural Pathology Center, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Department of Pathology and Pathophysiology, Ultrastructural Pathology Center, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chu
- Department of Pathology and Pathophysiology, Ultrastructural Pathology Center, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathology and Pathophysiology, Ultrastructural Pathology Center, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yang
- Department of Pathology and Pathophysiology, Ultrastructural Pathology Center, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Pei
- Department of Pathology and Pathophysiology, Ultrastructural Pathology Center, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathology and Pathophysiology, Ultrastructural Pathology Center, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qing Tian
- Department of Pathology and Pathophysiology, Ultrastructural Pathology Center, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Tau protein kinases: involvement in Alzheimer's disease. Ageing Res Rev 2013; 12:289-309. [PMID: 22742992 DOI: 10.1016/j.arr.2012.06.003] [Citation(s) in RCA: 433] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby might contribute to tau aggregation. Thus, understanding the regulation modes of tau phosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates in order to elaborate protection strategies to cope with these lesions in Alzheimer's disease. Among the possible and specific interventions that reverse tau phosphorylation is the inhibition of certain tau kinases. Here, we extensively reviewed tau protein kinases, their physiological roles and regulation, their involvement in tau phosphorylation and their relevance to AD. We also reviewed the most common inhibitory compounds acting on each tau kinase.
Collapse
|
12
|
Rafn B, Nielsen CF, Andersen SH, Szyniarowski P, Corcelle-Termeau E, Valo E, Fehrenbacher N, Olsen CJ, Daugaard M, Egebjerg C, Bøttzauw T, Kohonen P, Nylandsted J, Hautaniemi S, Moreira J, Jäättelä M, Kallunki T. ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression. Mol Cell 2012; 45:764-76. [PMID: 22464443 DOI: 10.1016/j.molcel.2012.01.029] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 08/23/2011] [Accepted: 01/28/2012] [Indexed: 12/29/2022]
Abstract
Aberrant ErbB2 receptor tyrosine kinase activation in breast cancer is strongly linked to an invasive disease. The molecular basis of ErbB2-driven invasion is largely unknown. We show that cysteine cathepsins B and L are elevated in ErbB2 positive primary human breast cancer and function as effectors of ErbB2-induced invasion in vitro. We identify Cdc42-binding protein kinase beta, extracellular regulated kinase 2, p21-activated protein kinase 4, and protein kinase C alpha as essential mediators of ErbB2-induced cysteine cathepsin expression and breast cancer cell invasiveness. The identified signaling network activates the transcription of cathepsin B gene (CTSB) via myeloid zinc finger-1 transcription factor that binds to an ErbB2-responsive enhancer element in the first intron of CTSB. This work provides a model system for ErbB2-induced breast cancer cell invasiveness, reveals a signaling network that is crucial for invasion in vitro, and defines a specific role and targets for the identified serine-threonine kinases.
Collapse
Affiliation(s)
- Bo Rafn
- Unit of Cell Death and Metabolism and Centre for Genotoxic Stress Research, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen 2100, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Effects of bee venom on glutamate-induced toxicity in neuronal and glial cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:368196. [PMID: 21904562 PMCID: PMC3166716 DOI: 10.1155/2012/368196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/02/2011] [Accepted: 05/30/2011] [Indexed: 11/18/2022]
Abstract
Bee venom (BV), which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis both in vivo and in vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS). Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To assess if BV can prevent glutamate-mediated neurotoxicity, we examined cell viability and signal transduction in glutamate-treated neuronal and microglial cells in the presence and absence of BV. We induced glutamatergic toxicity in neuronal cells and microglial cells and found that BV protected against cell death. Furthermore, BV significantly inhibited the cellular toxicity of glutamate, and pretreatment with BV altered MAP kinase activation (e.g., JNK, ERK, and p38) following exposure to glutamate. These findings suggest that treatment with BV may be helpful in reducing glutamatergic cell toxicity in neurodegenerative diseases.
Collapse
|
14
|
Cai T, Che H, Yao T, Chen Y, Huang C, Zhang W, Du K, Zhang J, Cao Y, Chen J, Luo W. Manganese induces tau hyperphosphorylation through the activation of ERK MAPK pathway in PC12 cells. Toxicol Sci 2010; 119:169-77. [PMID: 20937724 DOI: 10.1093/toxsci/kfq308] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Manganese has long been known to induce neurological degenerative disorders. Emerging evidence indicates that hyperphosphorylated tau is associated with neurodegenerative diseases, but whether such hyperphosphorylation plays a role in manganese-induced neurotoxicity remains unclear. To fill this gap, we investigated the effects of manganese on tau phosphorylation in PC12 cells. In our present research, treatment of cells with manganese increased the phosphorylation of tau at Ser199, Ser202, Ser396, and Ser404 as detected by Western blot. Moreover, this manganese-induced tau phosphorylation paralleled the activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK). The mitogen-activated protein kinase kinase-1 (MEK1) inhibitor PD98059, which inhibits the activation of ERK MAPK, partially attenuated manganese-induced tau hyperphosphorylation and cytotoxicity. Moreover, the activation of ERK MAPK was involved in the activation of glycogen synthase kinase-3β (GSK-3β) kinase, which also contributed to the hyperphosphorylation of tau and the cytotoxicity in PC12 cells induced by manganese. Taken together, we found for the first time that the exposure to manganese can cause the hyperphosphorylation of tau, which may be connected with the activation of ERK MAPK.
Collapse
Affiliation(s)
- Tongjian Cai
- Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tiedemann K, Hussein O, Sadvakassova G, Guo Y, Siegel PM, Komarova SV. Breast cancer-derived factors stimulate osteoclastogenesis through the Ca2+/protein kinase C and transforming growth factor-beta/MAPK signaling pathways. J Biol Chem 2009; 284:33662-70. [PMID: 19801662 DOI: 10.1074/jbc.m109.010785] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Breast cancer commonly metastasizes to bone where its growth depends on the action of bone-resorbing osteoclasts. We have previously shown that breast cancer cells secrete factors able to directly stimulate osteoclastogenesis from receptor activator of nuclear factor kappaB ligand (RANKL)-primed precursors and that transforming growth factor-beta (TGFbeta) plays a permissive role in this process. Now, we evaluate the signaling events triggered in osteoclast precursors by soluble factors produced by MDA-MB-231 human breast carcinoma cells. In mouse bone marrow cultures and RAW 264.7 murine monocytic cells, MDA-MB-231-derived factors increased osteoclast number, size, and nucleation. These factors failed to induce Smad2 phosphorylation, and short interfering RNAs against Smad4 did not affect their ability to induce osteoclastogenesis. In contrast, MDA-MB-231 factors induced phosphorylation of p38 and ERK1/2, and pharmacological inhibitors against p38 (SB203580) and MEK1/2 (PD98059) impeded the osteoclastogenic effects of cancer-derived factors. Neutralizing antibodies against TGFbeta attenuated p38 activation, whereas activation of ERK1/2 was shortened in duration, but not decreased in amplitude. ERK1/2 phosphorylation induced by cancer-derived factors was blocked by MEK1/2 inhibitor, but not by Ras (manumycin A) or Raf (GW5074) inhibitors. Inhibition of protein kinase Calpha using Gö6976 prevented both ERK1/2 phosphorylation and osteoclast formation in response to MDA-MB-231-derived factors. Using microspectrofluorimetry of fura-2-AM-loaded osteoclast precursors, we have found that cancer-derived factors, similar to RANKL, induced sustained oscillations in cytosolic free calcium. The calcium chelator BAPTA prevented calcium elevations and osteoclast formation in response to MDA-MB-231-derived factors. Thus, we have shown that breast cancer-derived factors induce osteoclastogenesis through the activation of calcium/protein kinase Calpha and TGFbeta-dependent ERK1/2 and p38 signaling pathways.
Collapse
Affiliation(s)
- Kerstin Tiedemann
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Lee KG, Cho HJ, Bae YS, Park KK, Choe JY, Chung IK, Kim M, Yeo JH, Park KH, Lee YS, Kim CH, Chang YC. Bee venom suppresses LPS-mediated NO/iNOS induction through inhibition of PKC-alpha expression. JOURNAL OF ETHNOPHARMACOLOGY 2009; 123:15-21. [PMID: 19429333 DOI: 10.1016/j.jep.2009.02.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 02/11/2009] [Accepted: 02/22/2009] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bee venom (BV) is a traditional Korean medicine that has been widely used with satisfactory results in the treatment of some immune-related diseases, especially rheumatoid arthritis. AIM OF THE STUDY The purpose of this study is to elucidate the molecular mechanism underlying the anti-inflammatory effects of BV, which is used in the treatment of various inflammatory diseases in traditional Korean medicine. We evaluated the anti-inflammatory effect of BV on NO generation and iNOS expression by LPS in rat C6 glioma cells. MATERIAL AND METHODS BV was obtained from the National Institute of Agricultural Science and Technology (NIAST) of Korea. Nitrite measurement, Immuno blot analysis, Reverse transcriptase-PCR and Electrophoretic mobility shift assay (EMSA) were used for assessment. RESULTS BV suppressed the LPS-induced NO generation and iNOS expression, and it also inhibited the expressions of LPS-induced pro-inflammatory molecules including Cox-2 and IL-1 beta in rat C6 glioma cells. Then, BV inhibited LPS-induced expression of PKC-alpha and MEK/ERK, not p38 and JNK. Moreover, inhibition of LPS-induced iNOS expression by BV was dependent on transcriptional activities of AP-1/NF-kappaB through MEK/ERK pathway. CONCLUSION These results indicate that BV suppresses LPS-induced iNOS activation through regulation of PKC-alpha. Accordingly, BV exerts a potent suppressive effect on pro-inflammatory responses in rat C6 glioma cells.
Collapse
Affiliation(s)
- Kwang-Gill Lee
- Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Suwon, Kyunggi-Do 441-100, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Watanabe H, Smith MJ, Heilig E, Beglopoulos V, Kelleher RJ, Shen J. Indirect regulation of presenilins in CREB-mediated transcription. J Biol Chem 2009; 284:13705-13713. [PMID: 19289467 DOI: 10.1074/jbc.m809168200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Presenilins are essential for synaptic function, memory formation, and neuronal survival. Previously, we reported that expression of cAMP response element-binding protein (CREB) target genes is reduced in the cerebral cortex of presenilin (PS) conditional double knock-out (cDKO) mice. To determine whether the reduced expression of the CREB target genes in these mutant mice is due to loss of presenilin directly or secondary to the impaired neuronal activity, we established a sensitive luciferase reporter system to assess direct transcriptional regulation in cultured cells. We first used immortalized PS-deficient mouse embryonic fibroblasts (MEFs), and found that both CREB-mediated transcription and Notch-mediated HES1 transcription are decreased. However, the ubiquitin-C promoter-mediated transcription is also reduced, and among these three reporters, transfection of exogenous PS1 can rescue only the Notch-mediated HES1 transcription. Further Northern analysis revealed transcriptional alterations of Creb, ubiquitin-C, and other housekeeping genes in PS-deficient MEFs, indicating transcriptional dysregulation in these cells. We then used the Cre/loxP system to develop a postnatal PS-deficient cortical neuronal culture. Surprisingly, in these PS-null neurons, CREB-mediated transcription is not significantly decreased, and levels of total and phosphorylated CREB proteins are unchanged as well. Notch-mediated HES1 transcription is markedly reduced, and this reduction can be rescued by exogenous PS1. Together, our findings suggest that CREB-mediated transcription is regulated indirectly by PS in the adult cerebral cortex, and that attenuation of CREB target gene expression in PS cDKO mice is likely due to reduced neuronal activity in these mutant brains.
Collapse
Affiliation(s)
- Hirotaka Watanabe
- Center for Neurologic Diseases, Brigham & Women's Hospital Harvard Medical School, Boston, Massachusetts 02115
| | - Miriam J Smith
- Center for Neurologic Diseases, Brigham & Women's Hospital Harvard Medical School, Boston, Massachusetts 02115
| | - Elizabeth Heilig
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Vassilios Beglopoulos
- Center for Neurologic Diseases, Brigham & Women's Hospital Harvard Medical School, Boston, Massachusetts 02115
| | - Raymond J Kelleher
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jie Shen
- Center for Neurologic Diseases, Brigham & Women's Hospital Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
18
|
Bojarski L, Pomorski P, Szybinska A, Drab M, Skibinska-Kijek A, Gruszczynska-Biegala J, Kuznicki J. Presenilin-dependent expression of STIM proteins and dysregulation of capacitative Ca2+ entry in familial Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:1050-7. [PMID: 19111578 DOI: 10.1016/j.bbamcr.2008.11.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/07/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
Mutations in presenilin 1 (PS1), which are the major cause of familial Alzheimer's disease (FAD), are involved in perturbations of cellular Ca2+ homeostasis. Attenuation of capacitative Ca2+ entry (CCE) is the most often observed alteration of Ca2+ homeostasis in cells bearing FAD PS1 mutations. However, molecular mechanisms underlying this CCE impairment remains elusive. We demonstrate that cellular levels of STIM1 and STIM2 proteins, which are key players in CCE, depend on presenilins. We found increased level of STIM1 and decreased level of STIM2 proteins in mouse embryonic fibroblasts lacking presenilins. Fura-2 ratiometric assays revealed that CCE is enhanced in these cells after Ca2+ stores depletion by thapsigargin treatment. In turn, overexpression of PS1 with FAD mutations in HEK293 cells led to an attenuation of CCE. Although, no changes in STIM protein levels were observed in these HEK293 cells, FAD mutations in endogenous PS1 in human B lymphocytes resulted in a decreased expression of STIM2 in parallel to an attenuation of CCE. Our experiments showing that knock-out of presenilins in MEF cells and FAD mutations in endogenous PS1 in lymphocytes affect both CCE and the cellular level of STIM proteins open new perspectives for studies on CCE in FAD.
Collapse
Affiliation(s)
- Lukasz Bojarski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|