1
|
Sato K, Suzuki-Utsunomiya K, Mitsui S, Ono S, Shimakura K, Otomo A, Hadano S. Central nervous system specific high molecular weight ALS2/alsin homophilic complex is enriched in mouse brain synaptosomes. Biochem Biophys Res Commun 2023; 638:168-175. [PMID: 36459881 DOI: 10.1016/j.bbrc.2022.11.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
ALS2/alsin, the causative gene product for a number of juvenile recessive motor neuron diseases, acts as a guanine nucleotide exchange factor (GEF) for Rab5, regulating early endosome trafficking and maturation. It has been demonstrated that ALS2 forms a tetramer, and this oligomerization is essential for its GEF activity and endosomal localization in established cancer cells. However, despite that ALS2 deficiency is implicated in neurological diseases, neither the subcellular distribution of ALS2 nor the form of its complex in the central nervous system (CNS) has been investigated. In this study, we showed that ALS2 in the brain was enriched both in synaptosomal and cytosolic fractions, while those in the liver were almost exclusively present in cytosolic fraction by differential centrifugation. Gel filtration chromatography revealed that cytosolic ALS2 prepared both from the brain and liver formed a tetramer. Remarkably, synaptosomal ALS2 existed as a high-molecular weight complex in addition to a tetramer. Such complex was also observed not only in embryonic brain but also several neuronal and glial cultures, but not in fibroblast-derived cell lines. Thus, the high-molecular weight ALS2 complex represents a unique form of ALS2-homophilic oligomers in the CNS, which may play a role in the maintenance of neural function.
Collapse
Affiliation(s)
- Kai Sato
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259- 1193, Japan
| | - Kyoko Suzuki-Utsunomiya
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259- 1193, Japan
| | - Shun Mitsui
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259- 1193, Japan
| | - Suzuka Ono
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259- 1193, Japan
| | - Kento Shimakura
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259- 1193, Japan
| | - Asako Otomo
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259- 1193, Japan; Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259- 1193, Japan; Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan; The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
2
|
Ishida M, E Oguchi M, Fukuda M. Multiple Types of Guanine Nucleotide Exchange Factors (GEFs) for Rab Small GTPases. Cell Struct Funct 2016; 41:61-79. [PMID: 27246931 DOI: 10.1247/csf.16008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rab small GTPases are highly conserved master regulators of membrane traffic in all eukaryotes. The same as the activation and inactivation of other small GTPases, the activation and inactivation of Rabs are tightly controlled by specific GEFs (guanine nucleotide exchange factors) and GAPs (GTPase-activating proteins), respectively. Although almost all Rab-GAPs reported thus far have a TBC (Tre-2/Bub2/Cdc16)/Rab-GAP domain in common, recent accumulating evidence has indicated the existence of a number of structurally unrelated types of Rab-GEFs, including DENN proteins, VPS9 proteins, Sec2 proteins, TRAPP complexes, heterodimer GEFs (Mon1-Ccz1, HPS1-HPS4 (BLOC-3 complex), Ric1-Rgp1 and Rab3GAP1/2), and other GEFs (e.g., REI-1 and RPGR). In this review article we provide an up-to-date overview of the structures and functions of all putative Rab-GEFs in mammals, with a special focus on their substrate Rabs, interacting proteins, associations with genetic diseases, and intracellular localizations.
Collapse
Affiliation(s)
- Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University
| | | | | |
Collapse
|
3
|
Gautam M, Jara JH, Sekerkova G, Yasvoina MV, Martina M, Özdinler PH. Absence of alsin function leads to corticospinal motor neuron vulnerability via novel disease mechanisms. Hum Mol Genet 2016; 25:1074-87. [PMID: 26755825 PMCID: PMC4764190 DOI: 10.1093/hmg/ddv631] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/29/2015] [Indexed: 12/11/2022] Open
Abstract
Mutations in the ALS2 gene result in early-onset amyotrophic lateral sclerosis, infantile-onset ascending hereditary spastic paraplegia and juvenile primary lateral sclerosis, suggesting prominent upper motor neuron involvement. However, the importance of alsin function for corticospinal motor neuron (CSMN) health and stability remains unknown. To date, four separate alsin knockout (AlsinKO) mouse models have been generated, and despite hopes of mimicking human pathology, none displayed profound motor function defects. This, however, does not rule out the possibility of neuronal defects within CSMN, which is not easy to detect in these mice. Detailed cellular analysis of CSMN has been hampered due to their limited numbers and the complex and heterogeneous structure of the cerebral cortex. In an effort to visualize CSMN in vivo and to investigate precise aspects of neuronal abnormalities in the absence of alsin function, we generated AlsinKO-UeGFP mice, by crossing AlsinKO and UCHL1-eGFP mice, a CSMN reporter line. We find that CSMN display vacuolated apical dendrites with increased autophagy, shrinkage of soma size and axonal pathology even in the pons region. Immunocytochemistry coupled with electron microscopy reveal that alsin is important for maintaining cellular cytoarchitecture and integrity of cellular organelles. In its absence, CSMN displays selective defects both in mitochondria and Golgi apparatus. UCHL1-eGFP mice help understand the underlying cellular factors that lead to CSMN vulnerability in diseases, and our findings reveal unique importance of alsin function for CSMN health and stability.
Collapse
Affiliation(s)
| | | | - Gabriella Sekerkova
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Marco Martina
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - P Hande Özdinler
- Department of Neurology and, Robert H. Lurie Comprehensive Cancer Center and Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Leal SS, Gomes CM. Calcium dysregulation links ALS defective proteins and motor neuron selective vulnerability. Front Cell Neurosci 2015; 9:225. [PMID: 26136661 PMCID: PMC4468822 DOI: 10.3389/fncel.2015.00225] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/28/2015] [Indexed: 12/12/2022] Open
Abstract
More than 20 distinct gene loci have so far been implicated in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder characterized by progressive neurodegeneration of motor neurons (MN) and death. Most of this distinct set of ALS-related proteins undergoes toxic deposition specifically in MN for reasons which remain unclear. Here we overview a recent body of evidence indicative that mutations in ALS-related proteins can disrupt fundamental Ca2+ signalling pathways in MN, and that Ca2+ itself impacts both directly or indirectly in many ALS critical proteins and cellular processes that result in MN neurodegeneration. We argue that the inherent vulnerability of MN to dysregulation of intracellular Ca2+ is deeply associated with discriminating pathogenicity and aberrant crosstalk of most of the critical proteins involved in ALS. Overall, Ca2+ deregulation in MN is at the cornerstone of different ALS processes and is likely one of the factors contributing to the selective susceptibility of these cells to this particular neurodegenerative disease.
Collapse
Affiliation(s)
- Sónia S Leal
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute and Department of Chemistry and Biochemistry, Universidade de Lisboa Campo Grande, Lisboa, Portugal ; Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | - Cláudio M Gomes
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute and Department of Chemistry and Biochemistry, Universidade de Lisboa Campo Grande, Lisboa, Portugal ; Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| |
Collapse
|