1
|
Qin D, Liu P, Chen H, Huang X, Ye W, Lin X, Wei F, Su J. Salicylate-Induced Ototoxicity of Spiral Ganglion Neurons: Ca 2+/CaMKII-Mediated Interaction Between NMDA Receptor and GABA A Receptor. Neurotox Res 2019; 35:838-847. [PMID: 30820888 DOI: 10.1007/s12640-019-0006-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
Sodium salicylate (SS) is one of the nonsteroidal anti-inflammatory drugs and widely used in clinical practice. Therefore, we aimed to investigate the potential ototoxicity mechanism of sodium salicylate: the influence of Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaMKII) in interaction between NMDA receptors (NMDAR) and GABAA receptors (GABAAR) in rat cochlear spiral ganglion neurons (SGNs). After treatment with SS, NMDA, and an NMDAR inhibitor (APV), the changes of GABAAR β3 (GABR β3) mRNA, surface and total protein, and GABAAR currents in SGNs were assessed by quantitative PCR, Western blot, and whole-cell patch clamp. Mechanistically, SS and/or NMDA increased the GABR β3 mRNA expression, while decreased GABR β3 surface protein levels and GABAAR-mediated currents. Moreover, application of SS and/or NMDA showed promotion in phosphorylation levels at S383 of GABR β3. Collectively, Ca2+ chelator (BAPTA) or Ca2+/CaMKII inhibitor (KN-93) reversed the effects of SS and/or NMDA on GABAAR. Therefore, we hypothesize that the interaction between NMDAR and GABAAR is involved in the SGNs damage induced by SS. In addition, the underlying molecular mechanism is related to Ca2+/CaMKII-mediated signaling pathway, which suggests that the interaction between calcium signal-regulated receptors mediates SS ototoxicity.
Collapse
Affiliation(s)
- Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huiying Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xi Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.,Department of Otolaryngology-Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China
| | - Wenhua Ye
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoyu Lin
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Fangyu Wei
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Reijntjes DO, Pyott SJ. The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery. Hear Res 2016; 336:1-16. [DOI: 10.1016/j.heares.2016.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/12/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022]
|
3
|
Gagnon M, Bergeron MJ, Lavertu G, Castonguay A, Tripathy S, Bonin RP, Perez-Sanchez J, Boudreau D, Wang B, Dumas L, Valade I, Bachand K, Jacob-Wagner M, Tardif C, Kianicka I, Isenring P, Attardo G, Coull JA, De Koninck Y. Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat Med 2013; 19:1524-8. [PMID: 24097188 PMCID: PMC4005788 DOI: 10.1038/nm.3356] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/21/2013] [Indexed: 12/19/2022]
Abstract
The K(+)-Cl(-) cotransporter KCC2 is responsible for maintaining low Cl(-) concentration in neurons of the central nervous system (CNS), which is essential for postsynaptic inhibition through GABA(A) and glycine receptors. Although no CNS disorders have been associated with KCC2 mutations, loss of activity of this transporter has emerged as a key mechanism underlying several neurological and psychiatric disorders, including epilepsy, motor spasticity, stress, anxiety, schizophrenia, morphine-induced hyperalgesia and chronic pain. Recent reports indicate that enhancing KCC2 activity may be the favored therapeutic strategy to restore inhibition and normal function in pathological conditions involving impaired Cl(-) transport. We designed an assay for high-throughput screening that led to the identification of KCC2 activators that reduce intracellular chloride concentration ([Cl(-)]i). Optimization of a first-in-class arylmethylidine family of compounds resulted in a KCC2-selective analog (CLP257) that lowers [Cl(-)]i. CLP257 restored impaired Cl(-) transport in neurons with diminished KCC2 activity. The compound rescued KCC2 plasma membrane expression, renormalized stimulus-evoked responses in spinal nociceptive pathways sensitized after nerve injury and alleviated hypersensitivity in a rat model of neuropathic pain. Oral efficacy for analgesia equivalent to that of pregabalin but without motor impairment was achievable with a CLP257 prodrug. These results validate KCC2 as a druggable target for CNS diseases.
Collapse
Affiliation(s)
- Martin Gagnon
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
- Chlorion Pharma, Inc. Laval, Qc
| | - Marc J. Bergeron
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
| | - Guillaume Lavertu
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
| | - Annie Castonguay
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
| | | | - Robert P. Bonin
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
| | - Jimena Perez-Sanchez
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
| | - Dominic Boudreau
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
| | | | | | | | - Karine Bachand
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
| | | | - Christian Tardif
- Institut universitaire en santé mentale de Québec, Qc
- Graduate program in biophotonics, Université Laval, Québec, Qc
| | | | - Paul Isenring
- Centre de recherche du Centre Hospitalier Universitaire de Québec, Qc
| | | | | | - Yves De Koninck
- Institut universitaire en santé mentale de Québec, Qc
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Qc
- Graduate program in biophotonics, Université Laval, Québec, Qc
| |
Collapse
|
4
|
Chamma I, Chevy Q, Poncer JC, Lévi S. Role of the neuronal K-Cl co-transporter KCC2 in inhibitory and excitatory neurotransmission. Front Cell Neurosci 2012; 6:5. [PMID: 22363264 PMCID: PMC3282916 DOI: 10.3389/fncel.2012.00005] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/30/2012] [Indexed: 01/06/2023] Open
Abstract
The K-Cl co-transporter KCC2 plays multiple roles in the physiology of central neurons and alterations of its function and/or expression are associated with several neurological conditions. By regulating intraneuronal chloride homeostasis, KCC2 strongly influences the efficacy and polarity of the chloride-permeable γ-aminobutyric acid (GABA) type A and glycine receptor (GlyR) mediated synaptic transmission. This appears particularly critical for the development of neuronal circuits as well as for the dynamic control of GABA and glycine signaling in mature networks. The activity of the transporter is also associated with transmembrane water fluxes which compensate solute fluxes associated with synaptic activity. Finally, KCC2 interaction with the actin cytoskeleton appears critical both for dendritic spine morphogenesis and the maintenance of glutamatergic synapses. In light of the pivotal role of KCC2 in the maturation and function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. These include development and activity-dependent modifications both at the transcriptional and post-translational levels. We emphasize the importance of post-translational mechanisms such as phosphorylation and dephosphorylation, oligomerization, cell surface stability, clustering and membrane diffusion for the rapid and dynamic regulation of KCC2 function.
Collapse
|
5
|
Friauf E, Rust MB, Schulenborg T, Hirtz JJ. Chloride cotransporters, chloride homeostasis, and synaptic inhibition in the developing auditory system. Hear Res 2011; 279:96-110. [PMID: 21683130 DOI: 10.1016/j.heares.2011.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/11/2011] [Indexed: 01/24/2023]
Abstract
The role of glycine and GABA as inhibitory neurotransmitters in the adult vertebrate nervous system has been well characterized in a variety of model systems, including the auditory, which is particularly well suited for analyzing inhibitory neurotransmission. However, a full understanding of glycinergic and GABAergic transmission requires profound knowledge of how the precise organization of such synapses emerges. Likewise, the role of glycinergic and GABAergic signaling during development, including the dynamic changes in regulation of cytosolic chloride via chloride cotransporters, needs to be thoroughly understood. Recent literature has elucidated the developmental expression of many of the molecular components that comprise the inhibitory synaptic phenotype. An equally important focus of research has revealed the critical role of glycinergic and GABAergic signaling in sculpting different developmental aspects in the auditory system. This review examines the current literature detailing the expression patterns and function (chapter 1), as well as the regulation and pharmacology of chloride cotransporters (chapter 2). Of particular importance is the ontogeny of glycinergic and GABAergic transmission (chapter 3). The review also surveys the recent work on the signaling role of these two major inhibitory neurotransmitters in the developing auditory system (chapter 4) and concludes with an overview of areas for further research (chapter 5).
Collapse
Affiliation(s)
- Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, POB 3049, D-67653 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|