1
|
Hu J, Wang Y, Le Q, Yu N, Cao X, Kuang S, Zhang M, Gu W, Sun Y, Yang Y, Yan X. Transcriptome sequencing of olfactory-related genes in olfactory transduction of large yellow croaker ( Larimichthy crocea) in response to bile salts. PeerJ 2019; 7:e6627. [PMID: 30918761 PMCID: PMC6431138 DOI: 10.7717/peerj.6627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/15/2019] [Indexed: 11/20/2022] Open
Abstract
Fish produce and release bile salts as chemical signalling substances that act as sensitive olfactory stimuli. To investigate how bile salts affect olfactory signal transduction in large yellow croaker (Larimichthy crocea), deep sequencing of olfactory epithelium was conducted to analyse olfactory-related genes in olfactory transduction. Sodium cholates (SAS) have typical bile salt chemical structures, hence we used four different concentrations of SAS to stimulate L. crocea, and the fish displayed a significant behavioural preference for 0.30% SAS. We then sequenced olfactory epithelium tissues, and identified 9938 unigenes that were significantly differentially expressed between SAS-stimulated and control groups, including 9055 up-regulated and 883 down-regulated unigenes. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses found eight categories linked to the olfactory transduction pathway that was highly enriched with some differentially expressed genes (DEGs), including the olfactory receptor (OR), Adenylate cyclase type 3 (ADCY3) and Calmodulin (CALM). Genes in these categories were analysed by RT-qPCR, which revealed aspects of the pathway transformation between odor detection, and recovery and adaptation. The results provide new insight into the effects of bile salt stimulation in olfactory molecular mechanisms in fishes, and expands our knowledge of olfactory transduction, and signal generation and decline.
Collapse
Affiliation(s)
- Jiabao Hu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yajun Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Qijun Le
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China.,Ningbo Entry-Exit Inspection and Quarantine Bureau Technical Centre, Ningbo, China
| | - Na Yu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiaohuan Cao
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Siwen Kuang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Man Zhang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Weiwei Gu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yibo Sun
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yang Yang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China.,Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.,College of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Abstract
Olfaction enables most mammalian species to detect and discriminate vast numbers of chemical structures called odorants and pheromones. The perception of such chemical compounds is mediated via two major olfactory systems, the main olfactory system and the vomeronasal system, as well as minor systems, such as the septal organ and the Grueneberg ganglion. Distinct differences exist not only among species but also among individuals in terms of their olfactory sensitivity; however, little is known about the mechanisms that determine these differences. In research on the olfactory sensitivity of mammals, scientists thus depend in most cases on behavioral testing. In this article, we reviewed scientific studies performed on various mammalian species using different methodologies and target chemical substances. Human and non-human primates as well as rodents and dogs are the most frequently studied species. Olfactory threshold studies on other species do not exist with the exception of domestic pigs. Olfactory testing performed on seals, elephants, and bats focused more on discriminative abilities than on sensitivity. An overview of olfactory sensitivity studies as well as olfactory detection ability in most studied mammalian species is presented here, focusing on comparable olfactory detection thresholds. The basics of olfactory perception and olfactory sensitivity factors are also described.
Collapse
|