1
|
Bai F, Wang J, Xia N, Sun Y, Xie Y, Zhao C, Sun J, Zhang X. UPLC-Q-TOF-MS/MS Combined with Network Pharmacology, Molecular Docking, and Animal Verification Reveals the Mechanism of Insomnia Treatment by Shen Qi Wu Wei Zi Capsules. Comb Chem High Throughput Screen 2024; 27:2433-2445. [PMID: 38151834 DOI: 10.2174/0113862073275553231202153259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Shen Qi Wu Wei Zi capsules (SQWWZ) are often used to treat insomnia; however, the potential therapeutic mechanism is still unclear. OBJECTIVE This study aimed to investigate the mechanism underlying the therapeutic effects of the Shen Qi Wu Wei Zi capsules on insomnia. METHODS The components of SQWWZ were identified using the UPLC-Q-TOF-MS/MS technique in conjunction with relevant literature. Insomnia-related targets were searched in the Gene- Cards and DisGeNET databases, and the intersection targets were obtained using a Venn diagram. A component-target-insomnia network diagram was constructed using Cytoscape 3.7.2 software. Core targets underwent GO and KEGG enrichment analyses. Molecular docking techniques were employed to verify the key proteins involved in the pathway and their corresponding compounds. Insomnia was induced in SD rats through the intraperitoneal injection of pchlorophenylalanine (DL-4-chlorophenylalanine, PCPA). The rats were treated orally with SQWWZ, and the serum levels of 5-HT and GABA in each group were determined using ELISA. Histological analysis of hippocampal tissue sections from the rats was performed using HE staining. RESULTS Using UPLC-Q-TOF-MS/MS and reviewing relevant literature, we identified 49 components of SQWWZ. Additionally, we obtained 1,043 drug targets and 367 insomnia-related targets. Among these, 82 targets were found to be common to both drug and insomnia targets. Following drug administration, rats in the treatment group exhibited a significant increase in the serum levels of 5-HT and GABA. Moreover, histological analysis using HE staining revealed neatly arranged hippocampal neuronal cells in the treated rats. CONCLUSION The active components of SQWWZ had good inhibition of insomnia. This study provides a reference and guidance for the in-depth study of SQWWZ for the treatment of insomnia.
Collapse
Affiliation(s)
- Fengyun Bai
- Shaanxi Dongtai Pharmaceutical Company, XianYang, 712031, Shaanxi, China
| | - Jie Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Ning Xia
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Ying Sun
- Shaanxi Dongtai Pharmaceutical Company, XianYang, 712031, Shaanxi, China
| | - Yundong Xie
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Chongbo Zhao
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| |
Collapse
|
2
|
Dhanabalan AK, Subaraja M, Palanichamy K, Velmurugan D, Gunasekaran K. Identification of a Chlorogenic Ester as a Monoamine Oxidase (MAO-B) Inhibitor by Integrating "Traditional and Machine Learning" Virtual Screening and In Vitro as well as In Vivo Validation: A Lead against Neurodegenerative Disorders? ACS Chem Neurosci 2021; 12:3690-3707. [PMID: 34553601 DOI: 10.1021/acschemneuro.1c00430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is the furthermost motor disorder of adult-onset dementia connected to memory and other cognitive abilities. Monoamine oxidases (MAOs) have gained significant attention in recent years owing to their possible therapeutic use against PD. Expression of MAO-B has been found to be elevated in PD patients for increased uptake of dopamine, producing hydrogen peroxide and finally causing neuronal injury. In this work, two new compounds have been identified as leads against MAO-B, and one of those compounds has been validated in vitro and in vivo. From the Protein Data Bank, MAO-B protein structures complexed with selegiline, 6-hydroxy-N-propargyl-1(R)-aminoindan, or a chromen derivative have been selected as templates for shape-based virtual screening (SB-VS) against the Traditional Chinese Medicinal (TCM) natural database. In parallel, using machine learning, a molecular-descriptor-based support vector model (SVM) was prepared and screened. For this purpose, naïve Bayesian, logistic regression, and random forest strategies were employed with the best specific molecular descriptor, which yielded a model with an overall accuracy (Q) of 0.81. Two common hit compounds lead-1 and lead-2 resulting from both shape and SVM screenings were analyzed through molecular docking and molecular dynamics (MD) simulation (200 ns). Also, from trajectory analysis such as molecular mechanics generalized Born surface area (MMGB/SA) and the residual interaction network (RIN) analyzer, both leads were found to bind at the active site with a favorable correlated motion, including domain movements. Lead-2, which is a chlorogenic ester, was synthesized and found to have no cytotoxic effect up to 50 μg/mL on Neuro-2A cells. The significant reactive oxygen species (ROS) scavenging activity by lead-2 could be correlated to its neuroprotective efficacy. Its capacity to inhibit human MAO-B through a competitive mode could be observed. An experimental zebra fish model confirms the neuroprotection by lead-2 by assessing the locomotor activities under malathion influence and treatment of lead-2. Also, histopathology analysis revealed that lead-2 could slow down degeneration in the brain. The present study emphasizes that integrating machine learning in parallel with traditional virtual screening may be useful to identify effective lead compounds for a given target.
Collapse
Affiliation(s)
- Anantha Krishnan Dhanabalan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Mamangam Subaraja
- Vivekanandha College of Arts and Sciences for Women (Autonomous), Tiruchengode 637205, Tamil Nadu, India
| | - Kuppusamy Palanichamy
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Krishnasamy Gunasekaran
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
- Bioinformatics Infrastructure Facility, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| |
Collapse
|
3
|
Sagud M, Nikolac Perkovic M, Vuksan-Cusa B, Maravic A, Svob Strac D, Mihaljevic Peles A, Zivkovic M, Kusevic Z, Pivac N. A prospective, longitudinal study of platelet serotonin and plasma brain-derived neurotrophic factor concentrations in major depression: effects of vortioxetine treatment. Psychopharmacology (Berl) 2016; 233:3259-67. [PMID: 27356518 DOI: 10.1007/s00213-016-4364-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/18/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Various antidepressants occupy brain serotonin transporter (SERT), decrease platelet serotonin (5-HT) concentration, and normalize reduced plasma brain-derived neurotrophic factor (BDNF) concentrations in depressed patients. Vortioxetine is a recently introduced antidepressant with a multimodal mechanism of action. In addition to SERT inhibition, vortioxetine acts via different 5-HT receptors. To further elucidate its mechanism of action, we have investigated the effects of vortioxetine on platelet 5-HT and plasma BDNF concentrations in patients with major depression. METHODS Platelet 5-HT and plasma BDNF concentrations were determined in 44 healthy subjects at baseline and in 44 depressed patients before and after 4 weeks of treatment with vortioxetine (5-15 mg daily). Platelet 5-HT concentration was determined using the ortho-phthalaldehyde-enhanced fluorometric method, and plasma BDNF concentration using a commercial enzyme-linked immunosorbent assay (Quantikine ELISA, R&D Systems). RESULTS At baseline, platelet 5-HT concentrations did not differ between depressed and control subjects, but plasma BDNF values were lower (p = 0.011; ω = 0.80) in depressed patients than in healthy subjects. Vortioxetine treatment significantly (p < 0.0001; ω = 0.80) decreased platelet 5-HT concentration and significantly (p = 0.004; ω = 0.80) increased plasma BDNF concentration in depressed patients compared to their baseline values. Age, gender, and smoking were not significantly associated with platelet 5-HT and plasma BDNF concentrations. CONCLUSION Despite a novel mechanism of action, vortioxetine shares some common effects with other antidepressants. This study is the first to show that, in addition to clinical improvement, 4 weeks of treatment with vortioxetine (5-15 mg daily), decreased platelet 5-HT and increased plasma BDNF concentrations in depressed patients.
Collapse
Affiliation(s)
- Marina Sagud
- Department of Psychiatry, School of Medicine, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10 000, Zagreb, Croatia
| | - Bjanka Vuksan-Cusa
- Department of Psychiatry, School of Medicine, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia.,Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10 000, Zagreb, Croatia
| | - Alma Mihaljevic Peles
- Department of Psychiatry, School of Medicine, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | | | - Zorana Kusevic
- Department of Psychiatry, School of Medicine, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
4
|
Harro J, Oreland L. The role of MAO in personality and drug use. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:101-11. [PMID: 26964906 DOI: 10.1016/j.pnpbp.2016.02.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
Monoamine oxidases, both MAO-A and MAO-B, have been implicated in personality traits and complex behaviour, including drug use. Findings supporting the involvement of MAO-A and MAO-B in shaping personality and in the development of strategies of making behavioural choices come from a variety of studies that have examined either prevalence of gene variants in clinical groups or population-derived samples, estimates of enzyme activity in blood or, by positron emission tomography, in the brain and, most recently, measurement of methylation of the gene. Most of the studies converge in associating MAO-A and MAO-B with impulsive, aggressive or antisocial personality traits or behaviours, including alcohol-related problems, and for MAO-A available evidence strongly supports interaction with adverse environmental exposures in childhood. What is known about genotype effects, and on expression and activity of the enzyme in the brain and in blood has not yet been possible to unite into a mechanistic model of the role of monoamine systems, but the reason for this low degree of generalization is likely caused by the cross-sectional nature of investigation that has not incorporated the developmental effects of MAO-s in critical time windows, including the foetal period. The "risk variants" of both MAO-s appear to increase behavioural plasticity, as supportive environments may particularly well enhance the hidden potential of their carriers. Importantly, male and female brain and behaviours have been found very different with regard to MAO×life events interaction. Future studies need to take into consideration these developmental aspects and sex/gender, as well as to specify the role of different types of environmental factors.
Collapse
Affiliation(s)
- Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Estonia; Psychiatry Clinic, North Estonia Medical Centre, Tallinn, Estonia.
| | - Lars Oreland
- Department of Neuroscience, Pharmacology, University of Uppsala, Biomedical Centre, Uppsala, Sweden
| |
Collapse
|
5
|
Abstract
Accumulating evidence shows a relationship between the human MAO-B (hMAO-B) enzyme and neuropsychiatric/degenerative disorder, personality traits, type II alcoholism, borderline personality disorders, aggressiveness and violence in crime, obsessive-compulsive disorder, depression, suicide, schizophrenia, anorexia nervosa, migraine, dementia, and PD. Thus, MAO-B represents an attractive target for the treatment of a number of human diseases. The discovery, development, and therapeutic use of drugs that inhibit MAO-B are major challenges for future therapy. Various compounds and drugs that selectively target this isoform have been discovered recently. These agents are synthetic compounds or natural products and their analogues, including chalcones, pyrazoles, chromones, coumarins, xanthines, isatin derivatives, thiazolidindiones, (thiazol-2-yl)hydrazones, and analogues of marketed drugs. Despite considerable efforts in understanding the binding interaction with specific substrates or inhibitors, structural information available for the rational design of new hMAO-B inhibitors remains unsatisfactory. Therefore, the quest for novel, potent, and selective hMAO-B inhibitors remains of high interest.
Collapse
Affiliation(s)
- Simone Carradori
- Dipartimento Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Romano Silvestri
- Dipartimento Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
6
|
|
7
|
Carradori S, Petzer JP. Novel monoamine oxidase inhibitors: a patent review (2012 - 2014). Expert Opin Ther Pat 2014; 25:91-110. [PMID: 25399762 DOI: 10.1517/13543776.2014.982535] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Monoamine oxidase (MAO) inhibitors, despite the initial pharmacological interest, are used in clinic for their antidepressant effect and in the management of Parkinson symptoms, due to the established neuroprotective action. Efficacy and tolerability emerged from large-scale and randomized clinical trials. AREAS COVERED Thirty-six patents range from April 2012 to September 2014. The number of chemotypes with inhibitory effects on MAO is truly high (40 synthetic compounds, 22 natural products and 6 plant extracts reported and licensed), and the present review is comprehensive of all compounds, which have been patented for their relevance to clinical medicine in this period range (27 patents). Moreover, some of the collected patents deal with new formulations of compounds endowed with MAO inhibitory properties (two patents) and new therapeutic options/drug associations for already known MAO inhibitors (seven patents). EXPERT OPINION The patents reported in this review showed that the interest in this field is constant and mainly devoted to the study of selective MAO-B inhibitors, used as drugs for the treatment of neurological disorders. The development of novel human MAO inhibitors took advantage of the discovery of new therapeutic targets (cancer, hair loss, muscle dystrophies, cocaine addiction and inflammation), the recognized role of MAOs as molecular biomarkers and their activity in other tissues.
Collapse
Affiliation(s)
- Simone Carradori
- Sapienza University of Rome, Department of Drug Chemistry and Technologies , P.le A. Moro 5, 00185, Rome , Italy +39 06 49913149 ; +39 06 49913923 ;
| | | |
Collapse
|
8
|
Nedic Erjavec G, Nenadic Sviglin K, Nikolac Perkovic M, Muck-Seler D, Jovanovic T, Pivac N. Association of gene polymorphisms encoding dopaminergic system components and platelet MAO-B activity with alcohol dependence and alcohol dependence-related phenotypes. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:321-7. [PMID: 25035107 DOI: 10.1016/j.pnpbp.2014.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/20/2014] [Accepted: 07/03/2014] [Indexed: 02/07/2023]
Abstract
The present study aimed to evaluate the association of alcohol dependence and alcohol dependence-related phenotypes with platelet monoamine oxidase type B (MAO-B) activity, Val108/158Met of catechol-o-methyltransferase (COMT), variable number of tandem repeats (VNTR) in the third exon of dopamine receptor D4 (DRD4) gene, VNTR in the 3'-untranslated region of dopamine transporter (DAT) gene, -1021C/T of dopamine beta-hydroxylase (DBH) and MAO-B intron 13 polymorphisms. The study included 1270 Caucasian men and women of Croatian origin: 690 patients with alcohol dependence and 580 healthy controls. Patients with alcohol dependence were subdivided according to the presence or absence of withdrawal symptoms, aggressive behavior, severity of alcohol dependence, delirium tremens, comorbid depression, suicidal behavior, lifetime suicide attempt and early/late onset of alcohol abuse. The results, corrected for multiple testing, revealed increased platelet MAO-B activity in patients with alcohol dependence, subdivided into those with or without alcohol-related liver diseases, compared to control subjects (P<0.001). In addition, we found an increased frequency of the COMT Met/Met genotype among suicidal (P=0.002) and patients who attempted suicide (P<0.001) and an increased frequency of COMT Val/Val genotype in patients with an early onset of alcohol dependence (P=0.004). This study provides data from a sample of ethnically homogeneous unrelated Caucasian subjects for future meta-analyses and suggests that the increased platelet MAO-B activity might be used as independent peripheral indicator of alcohol dependence, while COMT Val108/158Met polymorphism is associated with increased suicidality and early onset of alcohol dependence.
Collapse
Affiliation(s)
| | - Korona Nenadic Sviglin
- Center for Alcoholism and Other Addictions, Psychiatric Hospital Vrapce, Zagreb, Croatia
| | | | - Dorotea Muck-Seler
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia.
| |
Collapse
|
9
|
Carradori S, Secci D, Bolasco A, Chimenti P, D'Ascenzio M. Patent-related survey on new monoamine oxidase inhibitors and their therapeutic potential. Expert Opin Ther Pat 2012; 22:759-801. [DOI: 10.1517/13543776.2012.698613] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|