1
|
Rowland BA, Bushnell CD, Duncan PW, Stein BE. Ameliorating Hemianopia with Multisensory Training. J Neurosci 2023; 43:1018-1026. [PMID: 36604169 PMCID: PMC9908311 DOI: 10.1523/jneurosci.0962-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Hemianopia (unilateral blindness), a common consequence of stroke and trauma to visual cortex, is a debilitating disorder for which there are few treatments. Research in an animal model has suggested that visual-auditory stimulation therapy, which exploits the multisensory architecture of the brain, may be effective in restoring visual sensitivity in hemianopia. It was tested in two male human patients who were hemianopic for at least 8 months following a stroke. The patients were repeatedly exposed to congruent visual-auditory stimuli within their blinded hemifield during 2 h sessions over several weeks. The results were dramatic. Both recovered the ability to detect and describe visual stimuli throughout their formerly blind field within a few weeks. They could also localize these stimuli, identify some of their features, and perceive multiple visual stimuli simultaneously in both fields. These results indicate that the multisensory therapy is a rapid and effective method for restoring visual function in hemianopia.SIGNIFICANCE STATEMENT Hemianopia (blindness on one side of space) is widely considered to be a permanent disorder. Here, we show that a simple multisensory training paradigm can ameliorate this disorder in human patients.
Collapse
Affiliation(s)
| | - Cheryl D Bushnell
- Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Pamela W Duncan
- Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | | |
Collapse
|
2
|
Jiang H, Stanford TR, Rowland BA, Stein BE. Association Cortex Is Essential to Reverse Hemianopia by Multisensory Training. Cereb Cortex 2021; 31:5015-5023. [PMID: 34056645 DOI: 10.1093/cercor/bhab138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/14/2022] Open
Abstract
Hemianopia induced by unilateral visual cortex lesions can be resolved by repeatedly exposing the blinded hemifield to auditory-visual stimuli. This rehabilitative "training" paradigm depends on mechanisms of multisensory plasticity that restore the lost visual responsiveness of multisensory neurons in the ipsilesional superior colliculus (SC) so that they can once again support vision in the blinded hemifield. These changes are thought to operate via the convergent visual and auditory signals relayed to the SC from association cortex (the anterior ectosylvian sulcus [AES], in cat). The present study tested this assumption by cryogenically deactivating ipsilesional AES in hemianopic, anesthetized cats during weekly multisensory training sessions. No signs of visual recovery were evident in this condition, even after providing animals with up to twice the number of training sessions required for effective rehabilitation. Subsequent training under the same conditions, but with AES active, reversed the hemianopia within the normal timeframe. These results indicate that the corticotectal circuit that is normally engaged in SC multisensory plasticity has to be operational for the brain to use visual-auditory experience to resolve hemianopia.
Collapse
Affiliation(s)
- Huai Jiang
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Benjamin A Rowland
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
3
|
Nagy AJ, Takeuchi Y, Berényi A. Coding of self-motion-induced and self-independent visual motion in the rat dorsomedial striatum. PLoS Biol 2018; 16:e2004712. [PMID: 29939998 PMCID: PMC6034886 DOI: 10.1371/journal.pbio.2004712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 07/06/2018] [Accepted: 06/11/2018] [Indexed: 11/21/2022] Open
Abstract
Evolutionary development of vision has provided us with the capacity to detect moving objects. Concordant shifts of visual features suggest movements of the observer, whereas discordant changes are more likely to be indicating independently moving objects, such as predators or prey. Such distinction helps us to focus attention, adapt our behavior, and adjust our motor patterns to meet behavioral challenges. However, the neural basis of distinguishing self-induced and self-independent visual motions is not clarified in unrestrained animals yet. In this study, we investigated the presence and origin of motion-related visual information in the striatum of rats, a hub of action selection and procedural memory. We found that while almost half of the neurons in the dorsomedial striatum are sensitive to visual motion congruent with locomotion (and that many of them also code for spatial location), only a small subset of them are composed of fast-firing interneurons that could also perceive self-independent visual stimuli. These latter cells receive their visual input at least partially from the secondary visual cortex (V2). This differential visual sensitivity may be an important support in adjusting behavior to salient environmental events. It emphasizes the importance of investigating visual motion perception in unrestrained animals.
Collapse
Affiliation(s)
- Anett J. Nagy
- MTA-SZTE “Momentum” Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Yuichi Takeuchi
- MTA-SZTE “Momentum” Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Antal Berényi
- MTA-SZTE “Momentum” Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
- Neuroscience Institute, New York University, New York, New York, United States of America
| |
Collapse
|
4
|
Jiang H, Stein BE, McHaffie JG. Multisensory training reverses midbrain lesion-induced changes and ameliorates haemianopia. Nat Commun 2015; 6:7263. [PMID: 26021613 PMCID: PMC6193257 DOI: 10.1038/ncomms8263] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 04/23/2015] [Indexed: 11/09/2022] Open
Abstract
Failure to attend to visual cues is a common consequence of visual cortex injury. Here, we report on a behavioural strategy whereby cross-modal (auditory-visual) training reinstates visuomotor competencies in animals rendered haemianopic by complete unilateral visual cortex ablation. The re-emergence of visual behaviours is correlated with the reinstatement of visual responsiveness in deep layer neurons of the ipsilesional superior colliculus (SC). This functional recovery is produced by training-induced alterations in descending influences from association cortex that allowed these midbrain neurons to once again transform visual cues into appropriate orientation behaviours. The findings underscore the inherent plasticity and functional breadth of phylogenetically older visuomotor circuits that can express visual capabilities thought to have been subsumed by more recently evolved brain regions. These observations suggest the need for reevaluating current concepts of functional segregation in the visual system and have important implications for strategies aimed at ameliorating trauma-induced visual deficits in humans.
Collapse
Affiliation(s)
- Huai Jiang
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1010 USA
| | - Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1010 USA
| | - John G McHaffie
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1010 USA
| |
Collapse
|
5
|
Wypych M, Nagy A, Mochol G, Foik A, Benedek G, Waleszczyk WJ. Spectral characteristics of phase sensitivity and discharge rate of neurons in the ascending tectofugal visual system. PLoS One 2014; 9:e103557. [PMID: 25083715 PMCID: PMC4118899 DOI: 10.1371/journal.pone.0103557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 07/04/2014] [Indexed: 11/19/2022] Open
Abstract
Drifting gratings can modulate the activity of visual neurons at the temporal frequency of the stimulus. In order to characterize the temporal frequency modulation in the cat’s ascending tectofugal visual system, we recorded the activity of single neurons in the superior colliculus, the suprageniculate nucleus, and the anterior ectosylvian cortex during visual stimulation with drifting sine-wave gratings. In response to such stimuli, neurons in each structure showed an increase in firing rate and/or oscillatory modulated firing at the temporal frequency of the stimulus (phase sensitivity). To obtain a more complete characterization of the neural responses in spatiotemporal frequency domain, we analyzed the mean firing rate and the strength of the oscillatory modulations measured by the standardized Fourier component of the response at the temporal frequency of the stimulus. We show that the spatiotemporal stimulus parameters that elicit maximal oscillations often differ from those that elicit a maximal discharge rate. Furthermore, the temporal modulation and discharge-rate spectral receptive fields often do not overlap, suggesting that the detection range for visual stimuli provided jointly by modulated and unmodulated response components is larger than the range provided by a one response component.
Collapse
Affiliation(s)
- Marek Wypych
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | - Andrzej Foik
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | |
Collapse
|
6
|
Gombkötő P, Berényi A, Nagypál T, Benedek G, Braunitzer G, Nagy A. Co-oscillation and synchronization between the posterior thalamus and the caudate nucleus during visual stimulation. Neuroscience 2013; 242:21-7. [PMID: 23542042 DOI: 10.1016/j.neuroscience.2013.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/05/2013] [Accepted: 03/15/2013] [Indexed: 12/01/2022]
Abstract
Recent results suggest significant cross-correlation between the spike trains of the suprageniculate nucleus (SG) of the posterior thalamus and the caudate nucleus (CN) during visual stimulation. In the present study visually evoked local field potentials (LFPs) were recorded simultaneously in the CN and the SG in order to investigate the coupling between these structures at a population level. The effect of static and dynamic visual stimulation was analyzed in 55 SG-CN LFP pairs in the frequency range 5-57Hz. Statistical analysis revealed significant correlation of the relative powers of each investigated frequency band (5-8Hz, 8-12Hz, 12-35Hz and 35-57Hz) during both static and dynamic visual stimulation. The temporal evolution of cross-correlation showed that in the majority of the cases the SG was activated first, and in approximately one third of the cases, the CN was activated earlier. These observations suggest a bidirectional information flow. The most interesting finding of this study is that different frequency bands exhibited significant cross-correlation in a stimulation paradigm-dependent manner. That is, static stimulation usually increased the cross-correlation of the higher frequency components (12-57Hz) of the LFP, while dynamic stimulation induced changes in the lowest frequency band (5-8Hz). This suggests a parallel processing of dynamic and static visual information in the SG and the CN. To our knowledge we are the first to provide evidence on the co-oscillation and synchronization of the CN and the SG at a population level upon visual stimulation, which suggests a significant cooperation between these structures in visual information processing.
Collapse
Affiliation(s)
- P Gombkötő
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
7
|
Standardized F1: a consistent measure of strength of modulation of visual responses to sine-wave drifting gratings. Vision Res 2012; 72:14-33. [PMID: 23000273 DOI: 10.1016/j.visres.2012.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/03/2012] [Accepted: 09/07/2012] [Indexed: 11/20/2022]
Abstract
The magnitude of spike-responses of neurons in the mammalian visual system to sine-wave luminance-contrast-modulated drifting gratings is modulated by the temporal frequency of the stimulation. However, there are serious problems with consistency and reliability of the traditionally used methods of assessment of strength of such modulation. Here we propose an intuitive and simple tool for assessment of the strength of modulations in the form of standardized F1 index, zF1. We define zF1 as the ratio of the difference between the F1 (component of amplitude spectrum of the spike-response at temporal frequency of stimulation) and the mean value of spectrum amplitudes to standard deviation along all frequencies in the spectrum. In order to assess the validity of this measure, we have: (1) examined behavior of zF1 using spike-responses to optimized drifting gratings of single neurons recorded from four 'visual' structures (area V1 of primary visual cortex, superior colliculus, suprageniculate nucleus and caudate nucleus) in the brain of commonly used visual mammal - domestic cat; (2) compared the behavior of zF1 with that of classical statistics commonly employed in the analysis of steady-state responses; (3) tested the zF1 index on simulated spike-trains generated with threshold-linear model. Our analyses indicate that zF1 is resistant to distortions due to the low spike count in responses and therefore can be particularly useful in the case of recordings from neurons with low firing rates and/or low net mean responses. While most V1 and a half of caudate neurons exhibit high zF1 indices, the majorities of collicular and suprageniculate neurons exhibit low zF1 indices. We conclude that despite the general shortcomings of measuring strength of modulation inherent in the linear system approach, zF1 can serve as a sensitive and easy to interpret tool for detection of modulation and assessment of its strength in responses of visual neurons.
Collapse
|