1
|
Wu T, Huang C, Yao Y, Du Z, Liu Z. Suicide Gene Delivery System Mediated by Ultrasound-Targeted Microbubble Destruction: A Promising Strategy for Cancer Therapy. Hum Gene Ther 2022; 33:1246-1259. [PMID: 36215248 DOI: 10.1089/hum.2022.152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The treatment of malignant tumors has always been one of the challenges that have plagued researchers and clinicians. The ideal status in cancer treatment is to eliminate tumor cells while avoiding damage to normal tissues. Different approaches have been investigated to achieve such a goal, and suicide gene therapy has emerged as a novel mode of cancer treatment. This approach involves the delivery of genes encoding enzymes that activate non-toxic prodrugs into cytotoxic metabolites that cause the death of transfected cancer cells. Despite promising results obtained both in vitro and in vivo, this innovative approach has long been stalled in the clinic due to the lack of a suitable delivery system to introduce the suicide gene into cancer cells. Ultrasound-targeted microbubble destruction (UTMD) represents a valuable non-viral vector system for site-specific and noninvasive gene therapy. Ultrasound promotes intracellular uptake of therapeutic agents by increasing vascular and cell membrane permeability, especially in the presence of microbubbles. In this scenario, the true potential of suicide genes can be translated into clinically valuable treatments for patients. This review provides background information on suicide gene therapy and UTMD technology, summarizes the current state of knowledge about UTMD-mediated suicide gene delivery in cancer treatment, and presents an outlook on its future development.
Collapse
Affiliation(s)
- Tong Wu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Chi Huang
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Yiran Yao
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Zhaolin Du
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | - Zhijun Liu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| |
Collapse
|
2
|
Warawdekar UM, Jain V, Patel H, Nanda A, Kamble V. Modifying gap junction communication in cancer therapy. Curr Res Transl Med 2020; 69:103268. [PMID: 33069641 DOI: 10.1016/j.retram.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
AIM Drug delivery is crucial for therapeutic efficacy and gap junction communication channels (GJIC) facilitate movement within the tumour. Pro-drug activation, a modality of cancer therapy leads to Ganciclovir triphosphate (GCV-TP) incorporation into newly synthesized DNA resulting in cell death. The objective was to enhance, with Histone deacetylase inhibitors (HDACi) and All Trans Retinoic Acid (ATRA), GJIC, crucial for drug delivery, and with combination, abrogate the observed detrimental effect of Dexamethasone (DXM). METHODS Cell lines (NT8E, and HeLa) were pre-treated with Valproic Acid (VPA) (1 mM), 4 Phenyl Butyrate (4PB) (2 mM), ATRA (10 μM) and Dexamethasone (1 μM). Protein quantitated with the Bicinchoninic (BCA) assay for cell lysates, membrane and soluble fractions was assessed with Western blotting for Connexins (43, 26 and 32) and E-Cadherin. A qRT-PCR was done for CX 43-GJA1, CX 26-GJB2, CX 32-GJB1 and E-Cadherin, and normalized with Glyceraldehyde Phosphate dehydrogenase (GAPDH). Further, localization of Connexins (CX) and E-Cadherin, GJIC competence, pre-clinical in-vitro studies and the mechanism of cell death were evaluated. RESULTS There was no toxicity or change in growth patterns observed with the drugs. In both the cell lines CX 43 localized to the membrane whereas CX 32 and CX 26 were present but not membrane bound. E-Cadherin was present on the membrane in NT8E and completely absent in HeLa cells. Effects of HDACi, DXM and ATRA were seen on the expression of Connexins and E-Cadherin in both the cell lines. NT8E and HeLa cell lines showed enhanced GJIC with 4PB [30 %], VPA [36 %] and ATRA [54 %] with a 60 % increase in cytotoxicity and an abrogation of Dexamethasone inhibition on combination with VPA or ATRA. CONCLUSION An enhancement of GJIC function by HDACi and ATRA increased cytotoxicity and could be effective in the presence of Dexamethasone, when combined with ATRA or VPA.
Collapse
Affiliation(s)
- Ujjwala M Warawdekar
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| | - Vaishali Jain
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Himani Patel
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Adyasha Nanda
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Vishal Kamble
- CRI Lab 1, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
3
|
Li H, Du H, Zhang G, Wu Y, Qiu P, Liu J, Guo J, Liu X, Sun L, Du B, Tan Y. Curcumin plays a synergistic role in combination with HSV-TK/GCV in inhibiting growth of murine B16 melanoma cells and melanoma xenografts. PeerJ 2019; 7:e7760. [PMID: 31579620 PMCID: PMC6756137 DOI: 10.7717/peerj.7760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
Melanoma is a global concern and accounts for the major mortality of skin cancers. Herpes simplex virus thymidine kinase gene with ganciclovir (HSV-TK/GCV) is a promising gene therapy for melanoma. Despite its low efficiency, it is well known for its bystander effect which is mainly mediated by gap junction. In this study, we found that curcumin reduced B16 melanoma cell viability in both time- and dose-dependent manner. Further study showed that curcumin improved the gap junction intercellular communication (GJIC) function, and upregulated the proteins essential to gap junction, such as connexin 32 and connexin 43, indicating the potential role in enhancing the bystander effect of HSV-TK/GCV. By co-culturing the B16TK cells, which stably expressed TK gene, with wildtype B16 (B16WT) cells, we found that co-treatment of curcumin and GCV synergistically inhibited B16 cell proliferation, but the effect could be eliminated by the gap junction inhibitor AGA. Moreover, curcumin markedly increased apoptosis rate of B16WT cells, suggesting its effect in enhancing the bystander effect of HSV-TK/GCV. In the in-vivo study, we established the xenografted melanoma model in 14 days by injecting mixture of B16TK and B16WT cell in a ratio of 3:7. The result demonstrated that, co-administration of curcumin and GCV significantly inhibited the xenograft growth, as indicated by the smaller size and less weight. The combinational effect was further confirmed as a synergistic effect. In conclusion, the results demonstrated that curcumin could enhance the killing effect and the bystander effect of HSV-TK/GCV in treating melanoma, which might be mediated by improved gap junction. Our data suggested that combination of HSV-TK/GCV with curcumin could be a potential chemosensitization strategy for cancer treatment.
Collapse
Affiliation(s)
- Hong Li
- Department of Biochemistry and Molecular Biology, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiyan Du
- Department of Biochemistry and Molecular Biology, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangxian Zhang
- Department of Biochemistry and Molecular Biology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingya Wu
- Department of Biochemistry and Molecular Biology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengxiang Qiu
- Department of Biochemistry and Molecular Biology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Liu
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Guo
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xijuan Liu
- Department of Biochemistry and Molecular Biology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- Integrative Cancer Center, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Biaoyan Du
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuhui Tan
- Department of Biochemistry and Molecular Biology, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Aasen T, Leithe E, Graham SV, Kameritsch P, Mayán MD, Mesnil M, Pogoda K, Tabernero A. Connexins in cancer: bridging the gap to the clinic. Oncogene 2019; 38:4429-4451. [PMID: 30814684 PMCID: PMC6555763 DOI: 10.1038/s41388-019-0741-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 01/26/2019] [Indexed: 02/08/2023]
Abstract
Gap junctions comprise arrays of intercellular channels formed by connexin proteins and provide for the direct communication between adjacent cells. This type of intercellular communication permits the coordination of cellular activities and plays key roles in the control of cell growth and differentiation and in the maintenance of tissue homoeostasis. After more than 50 years, deciphering the links among connexins, gap junctions and cancer, researchers are now beginning to translate this knowledge to the clinic. The emergence of new strategies for connexin targeting, combined with an improved understanding of the molecular bases underlying the dysregulation of connexins during cancer development, offers novel opportunities for clinical applications. However, different connexin isoforms have diverse channel-dependent and -independent functions that are tissue and stage specific. This can elicit both pro- and anti-tumorigenic effects that engender significant challenges in the path towards personalised medicine. Here, we review the current understanding of the role of connexins and gap junctions in cancer, with particular focus on the recent progress made in determining their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, Barcelona, Spain.
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital and K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), University of A Coruña, A Coruña, Spain
| | - Marc Mesnil
- STIM Laboratory, Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers, France
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, München, Germany
| | - Arantxa Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
5
|
Mirani B, Pagan E, Shojaei S, Duchscherer J, Toyota BD, Ghavami S, Akbari M. A 3D bioprinted hydrogel mesh loaded with all-trans retinoic acid for treatment of glioblastoma. Eur J Pharmacol 2019; 854:201-212. [PMID: 30974104 DOI: 10.1016/j.ejphar.2019.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022]
Abstract
Treatment of glioblastoma (GBM), as the most lethal type of brain tumor, still remains a major challenge despite the various therapeutic approaches developed over the recent decades. GBM is considered as one of the most therapy-resistant human tumors. Treatment with temozolomide (TMZ) chemotherapy and radiotherapy in GBM patients has led to 30% of two-year survival rate (American Brain Tumor Association), representing a demanding field to develop more effective therapeutic strategies. This study presents a novel method for local delivery of all-trans retinoic acid (ATRA) for targeting GBM cells as a possible adjuvant therapeutic strategy for this disease. We have used 3D bioprinting to fabricate hydrogel meshes laden with ATRA-loaded polymeric particles. The ATRA-loaded meshes have been shown to facilitate a sustained release of ATRA with tunable release rate. Cell viability assay was used to demonstrate the ability of fabricated meshes in reducing cell growth in U-87 MG cell line. We later showed that the developed meshes induced apoptotic cell death in U-87 MG. Furthermore, the use of hydrogel for embedding the ATRA-loaded particles can facilitate the immobilization of the drug next to the tumor site. Our current innovative approach has shown the potential to open up new avenues for treatment of GBM, benefiting patients who suffer from this debilitating disease.
Collapse
Affiliation(s)
- Bahram Mirani
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, V8P 5C2, Canada; Centre for Biomedical Research (CBR), University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Erik Pagan
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Shahla Shojaei
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, V8P 5C2, Canada; Centre for Biomedical Research (CBR), University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Jade Duchscherer
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Brian D Toyota
- Division of Neurosurgery, Faculty of Medicine, Queen's University, Kingston, ON, K7K 1G8, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Faculty of Health Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada; Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, V8P 5C2, Canada; Centre for Biomedical Research (CBR), University of Victoria, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
6
|
Kojima K, Miyoshi H, Nagoshi N, Kohyama J, Itakura G, Kawabata S, Ozaki M, Iida T, Sugai K, Ito S, Fukuzawa R, Yasutake K, Renault‐Mihara F, Shibata S, Matsumoto M, Nakamura M, Okano H. Selective Ablation of Tumorigenic Cells Following Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation in Spinal Cord Injury. Stem Cells Transl Med 2019; 8:260-270. [PMID: 30485733 PMCID: PMC6392358 DOI: 10.1002/sctm.18-0096] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022] Open
Abstract
Tumorigenesis is an important problem that needs to be addressed in the field of human stem/progenitor cell transplantation for the treatment of subacute spinal cord injury (SCI). When certain "tumorigenic" cell lines are transplanted into the spinal cord of SCI mice model, there is initial improvement of motor function, followed by abrupt deterioration secondary to the effect of tumor growth. A significant proportion of the transplanted cells remains undifferentiated after transplantation and is thought to increase the risk of tumorigenesis. In this study, using lentiviral vectors, we introduced the herpes simplex virus type 1 thymidine kinase (HSVtk) gene into a human induced pluripotent stem cell-derived neural stem/progenitor cell (hiPSC-NS/PC) line that is known to undergo tumorigenic transformation. Such approach enables selective ablation of the immature proliferating cells and thereby prevents subsequent tumor formation. In vitro, the HSVtk system successfully ablated the immature proliferative neural cells while preserving mature postmitotic neuronal cells. Similar results were observed in vivo following transplantation into the injured spinal cords of immune-deficient (nonobese diabetic-severe combined immune-deficient) mice. Ablation of the proliferating cells exerted a protective effect on the motor function which was regained after transplantation, simultaneously defending the spinal cord from the harmful tumor growth. These results suggest a potentially promising role of suicide genes in opposing tumorigenesis during stem cell therapy. This system allows both preventing and treating tumorigenesis following hiPSC-NS/PC transplantation without sacrificing the improved motor function. Stem Cells Translational Medicine 2019;8:260&270.
Collapse
Affiliation(s)
- Kota Kojima
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Hiroyuki Miyoshi
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Narihito Nagoshi
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Jun Kohyama
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Go Itakura
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Soya Kawabata
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Masahiro Ozaki
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Tsuyoshi Iida
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Keiko Sugai
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Shuhei Ito
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Ryuji Fukuzawa
- Department of PathologyInternational University of Health and WelfareChibaJapan
| | - Kaori Yasutake
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | | | - Shinsuke Shibata
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Morio Matsumoto
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Masaya Nakamura
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Hideyuki Okano
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
7
|
Fischer-Huchzermeyer S, Chikobava L, Stahn V, Zangarini M, Berry P, Veal GJ, Senner V, Mautner VF, Harder A. Testing ATRA and MEK inhibitor PD0325901 effectiveness in a nude mouse model for human MPNST xenografts. BMC Res Notes 2018; 11:520. [PMID: 30055648 PMCID: PMC6064132 DOI: 10.1186/s13104-018-3630-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/20/2018] [Indexed: 01/29/2023] Open
Abstract
Objective Malignant peripheral nerve sheath tumors (MPNST) are aggressive sarcomas characterized by high recurrence rates and early metastases. These tumors arise more frequently within neurofibromatosis type 1 (NF1) and present with resistance during standard chemotherapy leading to increased mortality and morbidity in those patients. In vitro all-trans retinoic acid (ATRA) and MEK inhibitors (MEKi) were shown to inhibit tumor proliferation, especially when applied in combination. Therefore, we established a nude mouse model to investigate if treatment of xenografts derived from NF1 associated S462 and T265 MPNST cells respond to ATRA and the MEKi PD0325901. Results We demonstrated that human NF1 associated MPNST derived from S462 but not T265 cells form solid subcutaneous tumors in Foxn1 nude mice but not in Balb/c, SHO or Shorn mice. We verified a characteristic staining pattern of human MPNST xenografts by immunohistochemistry. Therapeutic effects of ATRA and/or MEKi PD0325901 on growth of S462 MPNST xenografts in Foxn1 nude mice were not demonstrated in vitro, as we did not observe significant suppression of MPNST growth compared with placebo treatment. Electronic supplementary material The online version of this article (10.1186/s13104-018-3630-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Levan Chikobava
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Verena Stahn
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Monique Zangarini
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Philip Berry
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Gareth J Veal
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Volker Senner
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Victor F Mautner
- Clinics and Polyclinics of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Harder
- Institute of Neuropathology, University Hospital Münster, Münster, Germany. .,Institute of Pathology, Health Care Center, Brandenburg Hospital, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany.
| |
Collapse
|
8
|
Jiang G, Dong S, Yu M, Han X, Zheng C, Zhu X, Tong X. Influence of gap junction intercellular communication composed of connexin 43 on the antineoplastic effect of adriamycin in breast cancer cells. Oncol Lett 2016; 13:857-866. [PMID: 28356970 DOI: 10.3892/ol.2016.5471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Gap junctions (GJs) serve the principal role in the antineoplastic (cytotoxicity and induced apoptosis) effect of chemical drugs. The aim of the present study was to determine the effect of GJ intercellular communication (GJIC) composed of connexin 43 (Cx43) on adriamycin cytotoxicity in breast cancer cells. Four cell lines (Hs578T, MCF-7, MDA-MB-231 and SK-BR-3) with different degree of malignancy were used in the study. The results of western blotting and immunofluorescence revealed that, in Hs578T and MCF-7 cells, which have a low degree of malignancy, the expression levels of Cx43 and GJIC were higher than those in MDA-MB-231 and SK-BR-3 cells (which have a high degree of malignancy). In Hs578T and MCF-7 cells, where GJ could be formed, the function of GJ was modulated by a pharmacological potentiators [retinoid acid (RA)]/inhibitors [oleamide and 18-α-glycyrrhetinic acid (18-α-GA)] and small interfering RNA (siRNA). In high-density cells (where GJ was formed), enhancement of GJ function by RA increased the cytotoxicity of adriamycin, while inhibition of GJ function by oleamide/18-α-GA and siRNA decreased the cytotoxicity caused by adriamycin. Notably, the modulation of GJ did not affect the survival of cells treated with adriamycin when cells were in low density (no GJ was formed). The present study illustrated the association between GJIC and the antitumor effect of adriamycin in breast cancer cells. The cytotoxicity of adriamycin on breast cancer cells was increased when the function of gap junctions was enhanced.
Collapse
Affiliation(s)
- Guojun Jiang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shuying Dong
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Meiling Yu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China; Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Xi Han
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Chao Zheng
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiaoguang Zhu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xuhui Tong
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
9
|
Wu L, Zhou WB, Shen F, Liu W, Wu HW, Zhou SJ, Li SW. Connexin32‑mediated antitumor effects of suicide gene therapy against hepatocellular carcinoma: In vitro and in vivo anticancer activity. Mol Med Rep 2016; 13:3213-9. [PMID: 26935255 DOI: 10.3892/mmr.2016.4895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 01/07/2016] [Indexed: 11/06/2022] Open
Abstract
Normal hepatocytes express connexin32 (Cx32), which forms gap junctions at cell‑cell contact areas. The aim of the present study was to investigate whether Cx32 mediates the cell death‑inducing effects of ultrasound microbubbles carrying the herpes simplex virus thymidine kinase (HSV‑TK) suicide gene against hepatocellular carcinoma cells in vitro and in vivo. HepG2 cells were exposed to different concentrations of trans‑retinoic acid (ATRA) in culture, to evaluate the intrinsic antitumor effect of ATRA. Detailed in‑vitro and in‑vivo investigations on the antitumor effects of ATRA via Cx32 mediation were performed, and the possible underlying mechanisms of action of the compound were then examined. The gene expression of HSV‑TK transfected by ultrasound wave irradiation in the HepG2 cells was quantified using reverse transcription‑quantitative polymerase chain reaction analysis. The effects on cell death were assessed using an MTT assay. The protein expression levels of Cx32 in ATRA‑untreated or ATRA‑treated tissues were quantified by immunohistochemical analysis and Western blot assays. The HSV‑TK gene was successfully transfected into the HepG2 cell using ultrasound wave irradiation, and was stably expressed. Compared with the other groups, the HSV‑TK gene group treated with ATRA exhibited an increased number of apoptotic cells (P<0.05) and improved tumor suppression (P<0.05). ATRA significantly increased the expression of Cx32 in the hepatoma tissues (P<0.01). The present study demonstrated that ATRA elevated the protein expression of Cx32 and enhanced the bystander effect of the HSV‑TK/GCV suicide gene therapy system, which may provide a potential strategy for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Lun Wu
- Department of Hepatobiliary Surgery, Experiment Center of Medicine, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Wen-Bo Zhou
- Department of Hepatobiliary Surgery, Experiment Center of Medicine, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Experiment Center of Medicine, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Wei Liu
- Department of Obstetrics, Haikou Hospital of Maternal and Child Health, Haikou, Hainan 570100, P.R. China
| | - Hong-Wei Wu
- Department of Hepatobiliary Surgery, Experiment Center of Medicine, Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei 442001, P.R. China
| | - Shi-Ji Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Sheng-Wei Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
10
|
Liang C, Yang L, Guo S. All- trans retinoic acid inhibits migration, invasion and proliferation, and promotes apoptosis in glioma cells in vitro. Oncol Lett 2015; 9:2833-2838. [PMID: 26137156 DOI: 10.3892/ol.2015.3120] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/17/2015] [Indexed: 01/09/2023] Open
Abstract
All-trans retinoic acid (ATRA) is a derivative of vitamin A that can induce differentiation and apoptosis, as well as inhibit proliferation, in glioma cells. However, the effect of ATRA on the migration and invasiveness of glioma remains poorly understood. In addition, although it is universally accepted that ATRA can induce apoptosis and inhibit proliferation in glioma cells, the association between the concentration and effects of ATRA remain unclear. Therefore, the present study investigated the effects of ATRA treatment on the migration, invasion, apoptosis and proliferation of glioma cells. The U87 and SHG44 glioma cell lines were treated with various concentrations of ATRA, consisting of 0, 5, 10, 20 and 40 µmol/l. A scratch wound healing assay and a Matrigel invasion assay were used to investigate cell migration and invasion, respectively. Flow cytometry was performed to investigate apoptosis and cell cycle distribution. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to investigate the expression of matrix metalloproteinase (MMP)-2 and -9 in each cell treatment group. Following treatment with ATRA, the migration, invasion and proliferation of the glioma cells were significantly inhibited, and the apoptosis rate was significantly increased compared with that of the blank control group. Furthermore, a dose-effect association was identified between each effects and ATRA treatment. The mRNA and protein expression of MMP-2 in U87 glioma cells was not significantly affected following treatment with low concentrations of ATRA, consisting of 5 and 10 µmol/l ATRA, compared with the expression in the control group (P>0.05). However, treatment with high concentrations of ATRA, consisting of 20 and 40 µmol/l ATRA, significantly downregulated the expression levels of MMP-2 in U87 cells. In contrast to U87 cells, the administration of ATRA treatment to SHG44 glioma cells resulted in a significant and dose-dependent downregulation in MMP-2 mRNA and protein expression (P<0.01). In addition, significant downregulation of MMP-9 expression was identified in the two glioma cell lines (P<0.01). The results of the present study indicate that treatment with ATRA may inhibit migration, invasion and proliferation, and promote apoptosis in glioma cells. Furthermore, the current study indicates that the inhibition of glioma cell invasion by ATRA may be partially associated with its effect ability to downregulate MMP expression.
Collapse
Affiliation(s)
- Chen Liang
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ling Yang
- Department of Aeromedical Physical Examination, Xi'an Civil Aviation Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Shiwen Guo
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
11
|
Liang C, Guo S, Yang L. Effects of all‑trans retinoic acid on VEGF and HIF‑1α expression in glioma cells under normoxia and hypoxia and its anti‑angiogenic effect in an intracerebral glioma model. Mol Med Rep 2014; 10:2713-9. [PMID: 25201493 DOI: 10.3892/mmr.2014.2543] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 05/21/2014] [Indexed: 11/06/2022] Open
Abstract
All‑trans retinoic acid (ATRA) is one of the most potent inducers of differentiation and is capable of inducing differentiation and apoptosis in glioma cells. However, the effect of ATRA on glioma angiogenesis is yet to be elucidated. The present study investigated the effects of ATRA on the expression of vascular endothelial growth factor (VEGF) and hypoxia‑inducible factor‑1α (HIF‑1α) in various glioma cell lines under normoxia and hypoxia. The effect of ATRA on angiogenesis in a rat intracerebral glioma model was also investigated, with the aim of revealing the effect of ATRA on glioma angiogenesis. In the present study, U‑87 MG and SHG44 glioma cells were treated with ATRA at various concentrations (0, 5, 10, 20 and 40 µmol/l) under normoxia or hypoxia. Quantitative polymerase chain reaction and western blot analysis were used to investigate VEGF and HIF‑1α mRNA and protein expression, respectively. An intracerebral glioma model was generated using intracerebral implantation of C6 glioma cells into rats. Tumor‑bearing rats were treated with ATRA at different doses (0, 5 and 10 mg/kg/day) for two weeks, and immunohistochemical assays were performed to detect the cluster of differentiation 34‑positive cells in order to evaluate the microvessel density (MVD) in each group. Following ATRA treatment, the expression of VEGF and HIF‑1α was found to vary among the different concentration groups. In the glioma cells in the lower concentration groups (5 and 10 µmol/l ATRA), a significant increase in VEGF and HIF‑1α expression was observed. Conversely, a significant decrease in VEGF and HIF‑1α expression was found in the glioma cells in the high ATRA concentration group (40 µmol/l), compared with that in the cells in the control group. Furthermore, in the rat intracerebral glioma model, ATRA decreased glioma MVD, particularly in the high‑dose group (10 mg/kg/day), compared with the control group. These results suggest that ATRA may exhibit a dose‑dependent effect on glioma angiogenesis and may inhibit glioma angiogenesis in vivo.
Collapse
Affiliation(s)
- Chen Liang
- Department of Neurosurgery, First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shiwen Guo
- Department of Neurosurgery, First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ling Yang
- Department of Aeromedical Physical Examination, Xi'an Civil Aviation Hospital, Xi'an, Shaanxi 710082, P.R. China
| |
Collapse
|
12
|
Hu C, Chen Z, Zhao W, Wei L, Zheng Y, He C, Zeng Y, Yin B. Vesicular Stomatitis Virus G Glycoprotein and ATRA Enhanced Bystander Killing of Chemoresistant Leukemic Cells by Herpes Simplex Virus Thymidine Kinase/Ganciclovir. Biomol Ther (Seoul) 2014; 22:114-21. [PMID: 24753816 PMCID: PMC3975477 DOI: 10.4062/biomolther.2013.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/05/2022] Open
Abstract
Refractoriness of acute myeloid leukemia (AML) cells to chemotherapeutics represents a major clinical barrier. Suicide gene therapy for cancer has been attractive but with limited clinical efficacy. In this study, we investigated the potential application of herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) based system to inhibit chemoresistant AML cells. We first generated Ara-C resistant K562 cells and doxorubicin-resistant THP-1 cells. We found that the HSV-TK/GCV anticancer system suppressed drug resistant leukemic cells in culture. Chemoresistant AML cell lines displayed similar sensitivity to HSV-TK/GCV. Moreover, HSV-TK/GCV killing of leukemic cells was augmented to a mild but significant extent by all-trans retinoic acid (ATRA) with concomitant upregulation of Connexin 43, a major component of gap junctions. Interestingly, HSV-TK/GCV killing was enhanced by expression of vesicular stomatitis virus G glycoprotein (VSV-G), a fusogenic membrane protein, which also increased leukemic cell fusion. Co-culture resistant cells expressing HSV-TK and cells stably transduced with VSV-G showed that expression of VSV-G could promote the bystander killing effect of HSV-TK/GCV. Furthermore, combination of HSV-TK/GCV with VSV-G plus ATRA produced more pronounced antileukemia effect. These results suggest that the HSV-TK/GCV system in combination with fusogenic membrane proteins and/or ATRA could provide a strategy to mitigate the chemoresistance of AML.
Collapse
Affiliation(s)
- Chenxi Hu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu province, 215123, PR China
| | - Zheng Chen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu province, 215123, PR China
| | - Wenjun Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu province, 215123, PR China
| | - Lirong Wei
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu province, 215123, PR China
| | - Yanwen Zheng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu province, 215123, PR China
| | - Chao He
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu province, 215123, PR China
| | - Yan Zeng
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bin Yin
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu province, 215123, PR China ; Thrombosis and Hemostasis Key Lab of the Ministry of Health, Soochow University, Suzhou, Jiangsu Province, 215006, PR China
| |
Collapse
|
13
|
Sakkas A, Zarogoulidis P, Domvri K, Hohenforst-Schmidt W, Bougiouklis D, Kakolyris S, Zarampoukas T, Kioumis I, Pitsiou G, Huang H, Li Q, Meditskou S, Tsiouda T, Pezirkianidis N, Zarogoulidis K. Safety and efficacy of suicide gene therapy with adenosine deaminase 5-fluorocytosine silmutaneously in in vitro cultures of melanoma and retinal cell lines. J Cancer 2014; 5:368-81. [PMID: 24799955 PMCID: PMC4007525 DOI: 10.7150/jca.9147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 12/16/2022] Open
Abstract
Local treatment as a treatment modality is gaining increased general acceptance over time. Novel drugs and methodologies of local administration are being investigated in an effort to achieve disease local control. Suicide gene therapy is a method that has been investigated as a local treatment with simultaneously distant disease control. In our current experiment we purchased HTB-70 (melanoma cell line, derived from metastatic axillary node) and CRL-2302 (human retinal epithelium) were from ATCC LGC Standards and Ancotil®, 2.5 g/250 ml (1 g/00ml) (5-Flucytosine) MEDA; Pharmaceuticals Ltd. UK. Adenosine Cytosine Deaminase (Ad.CD) was also used in order to convert the pro-drug 5-Flucytosine to the active 5-Fluoracil. Three different concentrations of 5-Flucytosine (5-FC) were administered (0.2ml, 0.8ml and 1.2ml). At indicated time-points (4h, 8h and 24h) cell viability and apoptosis were measured. Our concept was to investigate whether suicide gene therapy with Ad. CD-5-FC could be used with safety and efficiency as a future local treatment for melanoma located in the eye cavity. Indeed, our results indicated that in every 5-FC administration had mild cytotoxicity for the retinal cells, while increased apoptosis was observed for the melanoma cell line.
Collapse
Affiliation(s)
- Antonios Sakkas
- 1. Pulmonary Department-Oncology Unit, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paul Zarogoulidis
- 1. Pulmonary Department-Oncology Unit, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kalliopi Domvri
- 1. Pulmonary Department-Oncology Unit, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Dimitris Bougiouklis
- 3. Gene and Cell Therapy Center, Hematology-BMT Unit, ``G. Papanikolaou`` Hospital, Thessaloniki, Greece
| | - Stylianos Kakolyris
- 4. Oncology Department, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Thomas Zarampoukas
- 1. Pulmonary Department-Oncology Unit, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Kioumis
- 1. Pulmonary Department-Oncology Unit, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Pitsiou
- 1. Pulmonary Department-Oncology Unit, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Haidong Huang
- 5. Department of Respiratory Diseases, Changhai Hospital/First Affiliated Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Qiang Li
- 5. Department of Respiratory Diseases, Changhai Hospital/First Affiliated Hospital of the Second Military Medical University, Shanghai, People's Republic of China
| | - Soultana Meditskou
- 6. Laboratory of Histology, Embryology and Anthropology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodora Tsiouda
- 7. Internal Medicine Department, ``Theiageneio`` Anticancer Hospital, Thessaloniki, Greece
| | | | - Konstantinos Zarogoulidis
- 1. Pulmonary Department-Oncology Unit, ``G. Papanikolaou`` General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
14
|
Alaee F, Sugiyama O, Virk MS, Tang H, Drissi H, Lichtler AC, Lieberman JR. Suicide gene approach using a dual-expression lentiviral vector to enhance the safety of ex vivo gene therapy for bone repair. Gene Ther 2013; 21:139-47. [PMID: 24285218 DOI: 10.1038/gt.2013.66] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/14/2013] [Accepted: 10/11/2013] [Indexed: 11/09/2022]
Abstract
'Ex vivo' gene therapy using viral vectors to overexpress BMP-2 is shown to heal critical-sized bone defects in experimental animals. To increase its safety, we constructed a dual-expression lentiviral vector to overexpress BMP-2 or luciferase and an HSV1-tk analog, Δtk (LV-Δtk-T2A-BMP-2/Luc). We hypothesized that administering ganciclovir (GCV) will eliminate the transduced cells at the site of implantation. The vector-induced expression of BMP-2 and luciferase in a mouse stromal cell line (W-20-17 cells) and mouse bone marrow cells (MBMCs) was reduced by 50% compared with the single-gene vector. W-20-17 cells were more sensitive to GCV compared with MBMCs (90-95% cell death at 12 days with GCV at 1 μg ml(-1) in MBMCs vs 90-95% cell death at 5 days by 0.1 μg ml(-1) of GCV in W-20-17 cells). Implantation of LV-Δtk-T2A-BMP-2 transduced MBMCs healed a 2 mm femoral defect at 4 weeks. Early GCV treatment (days 0-14) postoperatively blocked bone formation confirming a biologic response. Delayed GCV treatment starting at day 14 for 2 or 4 weeks reduced the luciferase signal from LV-Δtk-T2A-Luc-transduced MBMCs, but the signal was not completely eliminated. These data suggest that this suicide gene strategy has potential for clinical use in the future, but will need to be optimized for increased efficiency.
Collapse
Affiliation(s)
- F Alaee
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - O Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - M S Virk
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - H Tang
- Department of Orthopaedic Surgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - H Drissi
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - A C Lichtler
- Department of Genetics and Developmental Biology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - J R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| |
Collapse
|
15
|
Shi Z, Lou M, Zhao Y, Zhang Q, Cui D, Wang K. Effect of all-trans retinoic acid on the differentiation of U87 glioma stem/progenitor cells. Cell Mol Neurobiol 2013; 33:943-51. [PMID: 23852377 PMCID: PMC11497866 DOI: 10.1007/s10571-013-9960-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
GSPCs (glioma stem/progenitor cells) were isolated from U87 glioma cell lines by serum-free neural stem cell medium. Four concentrations (1, 2, 4, and 8 μmol/L) of ATRA (all-trans retinoic acid) were used to induce the differentiation of GSPCs in the medium with or without growth factors. The effect of ATRA on the differentiation of GSPCs was analyzed by flow cytometry, real-time-PCR, and immunofluorescence. The differentiation of GSPCs could be induced by 1 or 2 μmol/L ATRA when GSPCs were cultured in growth factor-free medium. The detection of real-time-PCR showed that the level of GFAP (glial fibrillary acidic protein) mRNA of differentiated GSPCs in the growth factor-free medium containing 1 μmol/L ATRA group was significantly higher than that in the control group, and there was no significant difference in the level of TUBB-3 mRNA between the two groups. The GSPCs suffered apoptosis in the growth factor-free medium containing 4 or 8 μmol/L ATRA. The differentiation of GSPCs could not be induced by ATRA when GSPCs were cultured in the medium containing growth factors. The percentage of cells in G0/G1 phase was 84.26 ± 2.24 %, and the percentage of apoptosis was 18.95 ± 2.53 % in experimental groups which was similar to those in the control group. In conclusion, ATRA has certain capacity to induce differentiation of GSPCs, while its effective concentration should be controlled strictly. The differentiation of GSPCs induced by ATRA cannot antagonize the formidable differential inhibition of epidermal growth factor and basic fibroblast growth factor.
Collapse
Affiliation(s)
- Zhe Shi
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University, No. 301 Middle Yanchang Road, Zabei District, Shanghai, 200072 China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University, No. 301 Middle Yanchang Road, Zabei District, Shanghai, 200072 China
| | - Yaodong Zhao
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University, No. 301 Middle Yanchang Road, Zabei District, Shanghai, 200072 China
| | - Quanbin Zhang
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University, No. 301 Middle Yanchang Road, Zabei District, Shanghai, 200072 China
| | - Daming Cui
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University, No. 301 Middle Yanchang Road, Zabei District, Shanghai, 200072 China
| | - Ke Wang
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University, No. 301 Middle Yanchang Road, Zabei District, Shanghai, 200072 China
| |
Collapse
|
16
|
Niu J, Xing C, Yan C, Liu H, Cui Y, Peng H, Chen Y, Li D, Jiang C, Li N, Yang H. Lentivirus-mediated CD/TK fusion gene transfection neural stem cell therapy for C6 glioblastoma. Tumour Biol 2013; 34:3731-41. [DOI: 10.1007/s13277-013-0957-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/19/2013] [Indexed: 01/17/2023] Open
|
17
|
Zarogoulidis P, Darwiche K, Sakkas A, Yarmus L, Huang H, Li Q, Freitag L, Zarogoulidis K, Malecki M. Suicide Gene Therapy for Cancer - Current Strategies. ACTA ACUST UNITED AC 2013; 4. [PMID: 24294541 DOI: 10.4172/2157-7412.1000139] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Current cancer treatments may create profound iatrogenic outcomes. The adverse effects of these treatments still remain, as the serious problems that practicing physicians have to cope with in clinical practice. Although, non-specific cytotoxic agents constitute an effective treatment modality against cancer cells, they also tend to kill normal, quickly dividing cells. On the other hand, therapies targeting the genome of the tumors are both under investigation, and some others are already streamlined to clinical practice. Several approaches have been investigated in order to find a treatment targeting the cancer cells, while not affecting the normal cells. Suicide gene therapy is a therapeutic strategy, in which cell suicide inducing transgenes are introduced into cancer cells. The two major suicide gene therapeutic strategies currently pursued are: cytosine deaminase/5-fluorocytosine and the herpes simplex virus/ganciclovir. The novel strategies include silencing gene expression, expression of intracellular antibodies blocking cells' vital pathways, and transgenic expression of caspases and DNases. We analyze various elements of cancer cells' suicide inducing strategies including: targets, vectors, and mechanisms. These strategies have been extensively investigated in various types of cancers, while exploring multiple delivery routes including viruses, non-viral vectors, liposomes, nanoparticles, and stem cells. We discuss various stages of streamlining of the suicide gene therapy into clinical oncology as applied to different types of cancer. Moreover, suicide gene therapy is in the center of attention as a strategy preventing cancer from developing in patients participating in the clinical trials of regenerative medicine. In oncology, these clinical trials are aimed at regenerating, with the aid of stem cells, of the patients' organs damaged by pathologic and/or iatrogenic factors. However, the stem cells carry the risk of neoplasmic transformation. We discuss cell suicide inducing strategies aimed at preventing stem cell-originated cancerogenesis.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece, EU ; Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany, EU
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Current world literature. Curr Opin Pediatr 2012; 24:770-9. [PMID: 23146873 DOI: 10.1097/mop.0b013e32835af8de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|