1
|
Soares P, Silva C, Chavarria D, Silva FSG, Oliveira PJ, Borges F. Drug discovery and amyotrophic lateral sclerosis: Emerging challenges and therapeutic opportunities. Ageing Res Rev 2023; 83:101790. [PMID: 36402404 DOI: 10.1016/j.arr.2022.101790] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of upper and lower motor neurons (MNs) leading to paralysis and, ultimately, death by respiratory failure 3-5 years after diagnosis. Edaravone and Riluzole, the only drugs currently approved for ALS treatment, only provide mild symptomatic relief to patients. Extraordinary progress in understanding the biology of ALS provided new grounds for drug discovery. Over the last two decades, mitochondria and oxidative stress (OS), iron metabolism and ferroptosis, and the major regulators of hypoxia and inflammation - HIF and NF-κB - emerged as promising targets for ALS therapeutic intervention. In this review, we focused our attention on these targets to outline and discuss current advances in ALS drug development. Based on the challenges and the roadblocks, we believe that the rational design of multi-target ligands able to modulate the complex network of events behind the disease can provide effective therapies in a foreseeable future.
Collapse
Affiliation(s)
- Pedro Soares
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Catia Silva
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Filomena S G Silva
- CNC - CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paulo J Oliveira
- CNC - CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Overexpression of miR-124 in Motor Neurons Plays a Key Role in ALS Pathological Processes. Int J Mol Sci 2021; 22:ijms22116128. [PMID: 34200161 PMCID: PMC8201298 DOI: 10.3390/ijms22116128] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
miRNA(miR)-124 is an important regulator of neurogenesis, but its upregulation in SOD1G93A motor neurons (mSOD1 MNs) was shown to associate with neurodegeneration and microglia activation. We used pre-miR-124 in wild-type (WT) MNs and anti-miR-124 in mSOD1 MNs to characterize the miR-124 pathological role. miR-124 overexpression in WT MNs produced a miRNA profile like that of mSOD1 MNs (high miR-125b; low miR-146a and miR-21), and similarly led to early apoptosis. Alterations in mSOD1 MNs were abrogated with anti-miR-124 and changes in their miRNAs mostly recapitulated by their secretome. Normalization of miR-124 levels in mSOD1 MNs prevented the dysregulation of neurite network, mitochondria dynamics, axonal transport, and synaptic signaling. Same alterations were observed in WT MNs after pre-miR-124 transfection. Secretome from mSOD1 MNs triggered spinal microglia activation, which was unno-ticed with that from anti-miR-124-modulated cells. Secretome from such modulated MNs, when added to SC organotypic cultures from mSOD1 mice in the early symptomatic stage, also coun-teracted the pathology associated to GFAP decrease, PSD-95 and CX3CL1-CX3CR1 signaling im-pairment, neuro-immune homeostatic imbalance, and enhanced miR-124 expression levels. Data suggest that miR-124 is implicated in MN degeneration and paracrine-mediated pathogenicity. We propose miR-124 as a new therapeutic target and a promising ALS biomarker in patient sub-populations.
Collapse
|
3
|
Rey F, Balsari A, Giallongo T, Ottolenghi S, Di Giulio AM, Samaja M, Carelli S. Erythropoietin as a Neuroprotective Molecule: An Overview of Its Therapeutic Potential in Neurodegenerative Diseases. ASN Neuro 2020; 11:1759091419871420. [PMID: 31450955 PMCID: PMC6712762 DOI: 10.1177/1759091419871420] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) is a cytokine mainly induced in hypoxia conditions. Its major production site is the kidney. EPO primarily acts on the erythroid progenitor cells in the bone marrow. More and more studies are highlighting its secondary functions, with a crucial focus on its role in the central nervous system. Here, EPO may interact with up to four distinct isoforms of its receptor (erythropoietin receptor [EPOR]), activating different signaling cascades with roles in neuroprotection and neurogenesis. Indeed, the EPO/EPOR axis has been widely studied in the neurodegenerative diseases field. Its potential therapeutic effects have been evaluated in multiple disorders, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, spinal cord injury, as well as brain ischemia, hypoxia, and hyperoxia. EPO is showing great promise by counteracting secondary neuroinflammatory processes, reactive oxygen species imbalance, and cell death in these diseases. Multiple studies have been performed both in vitro and in vivo, characterizing the mechanisms through which EPO exerts its neurotrophic action. In some cases, clinical trials involving EPO have been performed, highlighting its therapeutic potential. Together, all these works indicate the potential beneficial effects of EPO.
Collapse
Affiliation(s)
- Federica Rey
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Alice Balsari
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Toniella Giallongo
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy
| | - Sara Ottolenghi
- 2 Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Italy
| | - Anna M Di Giulio
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy.,3 Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Italy
| | - Michele Samaja
- 2 Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Italy
| | - Stephana Carelli
- 1 Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Italy.,3 Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Italy
| |
Collapse
|
4
|
25-Hydroxycholesterol is involved in the pathogenesis of amyotrophic lateral sclerosis. Oncotarget 2017; 8:11855-11867. [PMID: 28060747 PMCID: PMC5355309 DOI: 10.18632/oncotarget.14416] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
This study aimed to evaluate the levels of three major hydroxycholesterols (24-, 25-, and 27-hydroxycholesterols) in the serum and cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS), as well as to show their role in the pathogenesis of ALS experimental models. The level of 25-hydroxycholesterol were higher in untreated ALS patients (n = 30) than in controls without ALS (n = 33) and ALS patients treated with riluzole (n = 9) both in their serum and CSF. The level of 25-hydroxycholesterol in the serum of ALS patients were significantly associated with their disease severity and rate of progression. In the motor neuron-like cell line (NSC34) with the human mutant G93A superoxide dismutase 1 gene (mSOD1-G93A), 25-hydroxycholesterol induced motor neuronal death/ apoptosis via glycogen synthase kinase-3β and liver X receptor pathways; riluzole treatment attenuated these effects. The expressions of enzymes that synthesize 25-hydroxycholesterol were significantly increased in the brains of early symptomatic mSOD1G93A mice. Our data, obtained from patients with ALS, a cellular model of ALS, and an animal model of ALS, suggests that 25-hydroxycholesterol could be actively involved in the pathogenesis of ALS, mostly in the early symptomatic disease stage, by mediating neuronal apoptosis.
Collapse
|
5
|
Pinto S, Cunha C, Barbosa M, Vaz AR, Brites D. Exosomes from NSC-34 Cells Transfected with hSOD1-G93A Are Enriched in miR-124 and Drive Alterations in Microglia Phenotype. Front Neurosci 2017; 11:273. [PMID: 28567000 PMCID: PMC5434170 DOI: 10.3389/fnins.2017.00273] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disorder affecting motor neurons (MNs). Evidences indicate that ALS is a non-cell autonomous disease in which glial cells participate in both disease onset and progression. Exosomal transfer of mutant copper-zinc superoxide dismutase 1 (mSOD1) from cell-to-cell was suggested to contribute to disease dissemination. Data from our group and others showed that exosomes from activated cells contain inflammatory-related microRNAs (inflamma-miRNAs) that recapitulate the donor cell. While glia-derived exosomes and their effects in neurons have been addressed by several studies, only a few investigated the influence of motor neuron (MN)-derived exosomes in other cell function, the aim of the present study. We assessed a set of inflamma-miRs in NSC-34 MN-like cells transfected with mutant SOD1(G93A) and extended the study into their derived exosomes (mSOD1 exosomes). Then, the effects produced by mSOD1 exosomes in the activation and polarization of the recipient N9 microglial cells were investigated. Exosomes in coculture with N9 microglia and NSC-34 cells [either transfected with either wild-type (wt) human SOD1 or mutant SOD1(G93A)] showed to be transferred into N9 cells. Increased miR-124 expression was found in mSOD1 NSC-34 cells and in their derived exosomes. Incubation of mSOD1 exosomes with N9 cells determined a sustained 50% reduction in the cell phagocytic ability. It also caused a persistent NF-kB activation and an acute generation of NO, MMP-2, and MMP-9 activation, as well as upregulation of IL-1β, TNF-α, MHC-II, and iNOS gene expression, suggestive of induced M1 polarization. Marked elevation of IL-10, Arginase 1, TREM2, RAGE, and TLR4 mRNA levels, together with increased miR-124, miR-146a, and miR-155, at 24 h incubation, suggest the switch to mixed M1 and M2 subpopulations in the exosome-treated N9 microglial cells. Exosomes from mSOD1 NSC-34 MNs also enhanced the number of senescent-like positive N9 cells. Data suggest that miR-124 is translocated from the mSOD1 MNs to exosomes, which determine early and late phenotypic alterations in the recipient N9-microglial cells. In conclusion, modulation of the inflammatory-associated miR-124, in mSOD1 NSC-34 MNs, with potential benefits in the cargo of their exosomes may reveal a promising therapeutic strategy in halting microglia activation and associated effects in MN degeneration.
Collapse
Affiliation(s)
- Sara Pinto
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Carolina Cunha
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Marta Barbosa
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Ana R Vaz
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Dora Brites
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
6
|
Li YC, Chen SJ, Chien CL. Erythropoietin produced by genetic-modified NIH/3T3 fibroblasts enhances the survival of degenerating neurons. Brain Behav 2015; 5:e00356. [PMID: 26357589 PMCID: PMC4559019 DOI: 10.1002/brb3.356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/12/2015] [Accepted: 05/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Erythropoietin (EPO) has potent neuroprotective effects. The short-term delivery of high-dose EPO seemed to improve patients' neuromuscular functions; however, excessive EPO resulted in systematically high hematocrit and thrombotic risk. In our study, we established a cellular material for future in vivo studies of neurodegenerative diseases based on EPO provided regionally at a nontoxic level. METHODS A mouse EPO cDNA was subcloned into the pCMS-EGFP vector and transfected into NIH/3T3 fibroblasts to design a biological provider that can regionally release EPO for the treatment of neurological diseases. After G418 selection, a stable EPO-overexpressing cell line, EPO-3T3-EGFP, was established. To further confirm the neuroprotective abilities of secreted EPO from EPO-3T3-EGFP cells, a cell model of neurodegeneration, PC12-INT-EGFP, was applied. RESULTS The expression level of EPO was highly elevated in EPO-3T3-EGFP cells, and an abundant amount of EPO secreted from EPO-3T3-EGFP cells was detected in the extracellular milieu. After supplementation with conditioned medium prepared from EPO-3T3-EGFP cells, the survival rate of PC12-INT-EGFP cells was significantly enhanced. Surprisingly, a fraction of aggregated cytoskeletal EGFP-tagged α-internexin in PC12-INT-EGFP cells was disaggregated and transported into neurites dynamically. The immunocytochemical distribution of IF proteins, including NF-M, phosphorylated-NF-M, and the α-INT-EGFP fusion protein, were less aggregated in the perikaryal region and transported into neurites after the EPO treatment. CONCLUSION The established EPO-overexpressing NIH/3T3 cell line, EPO-3T3-EGFP, may provide a material for future studies of cell-based therapies for neurodegenerative diseases via the secretion of EPO on a short-term, high-dose, regional basis.
Collapse
Affiliation(s)
- Yi-Chin Li
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University Taipei, Taiwan
| | - Shiu-Jau Chen
- Department of Medicine, Mackay Medical College New Taipei, Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University Taipei, Taiwan
| |
Collapse
|
7
|
Lauria G, Dalla Bella E, Antonini G, Borghero G, Capasso M, Caponnetto C, Chiò A, Corbo M, Eleopra R, Fazio R, Filosto M, Giannini F, Granieri E, La Bella V, Logroscino G, Mandrioli J, Mazzini L, Monsurrò MR, Mora G, Pietrini V, Quatrale R, Rizzi R, Salvi F, Siciliano G, Sorarù G, Volanti P, Tramacere I, Filippini G. Erythropoietin in amyotrophic lateral sclerosis: a multicentre, randomised, double blind, placebo controlled, phase III study. J Neurol Neurosurg Psychiatry 2015; 86:879-86. [PMID: 25595151 PMCID: PMC4515982 DOI: 10.1136/jnnp-2014-308996] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/14/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess the efficacy of recombinant human erythropoietin (rhEPO) in amyotrophic lateral sclerosis (ALS). METHODS Patients with probable laboratory-supported, probable or definite ALS were enrolled by 25 Italian centres and randomly assigned (1:1) to receive intravenous rhEPO 40,000 IU or placebo fortnightly as add-on treatment to riluzole 100 mg daily for 12 months. The primary composite outcome was survival, tracheotomy or >23 h non-invasive ventilation (NIV). Secondary outcomes were ALSFRS-R, slow vital capacity (sVC) and quality of life (ALSAQ-40) decline. Tolerability was evaluated analysing adverse events (AEs) causing withdrawal. The randomisation sequence was computer-generated by blocks, stratified by centre, disease severity (ALSFRS-R cut-off score of 33) and onset (spinal or bulbar). The main outcome analysis was performed in all randomised patients and by intention-to-treat for the entire population and patients stratified by severity and onset. The study is registered, EudraCT 2009-016066-91. RESULTS We randomly assigned 208 patients, of whom 5 (1 rhEPO and 4 placebo) withdrew consent and 3 (placebo) became ineligible (retinal thrombosis, respiratory insufficiency, SOD1 mutation) before receiving treatment; 103 receiving rhEPO and 97 placebo were eligible for analysis. At 12 months, the annualised rate of death (rhEPO 0.11, 95% CI 0.06 to 0.20; placebo: 0.08, CI 0.04 to 0.17), tracheotomy or >23 h NIV (rhEPO 0.16, CI 0.10 to 0.27; placebo 0.18, CI 0.11 to 0.30) did not differ between groups, also after stratification by onset and ALSFRS-R at baseline. Withdrawal due to AE was 16.5% in rhEPO and 8.3% in placebo. No differences were found for secondary outcomes. CONCLUSIONS RhEPO 40,000 IU fortnightly did not change the course of ALS.
Collapse
Affiliation(s)
- Giuseppe Lauria
- Neuromuscular Disease, IRCCS Foundation, "Carlo Besta" Neurological Institute, Milan, Italy
| | - Eleonora Dalla Bella
- Neuromuscular Disease, IRCCS Foundation, "Carlo Besta" Neurological Institute, Milan, Italy
| | - Giovanni Antonini
- NESMOS Department, Neuromuscular Disease Unit, Sant'Andrea Hospital and University of Rome "Sapienza", Rome, Italy
| | | | | | - Claudia Caponnetto
- Departments of Neurosciences, Rehabilitation, Ophtalmology, Genetics, Mother and Child Disease, IRCCS University Hospital San Martino IST, Genova, Italy
| | - Adriano Chiò
- Department of Neurosciences, ALS Centre, "Rita Levi Montalcini" Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Massimo Corbo
- NEMO Clinical Centre, Milan, Italy Department of Neurorehabilitaton, Casa Cura Policlinico, Milan, Italy
| | - Roberto Eleopra
- Neurology Unit, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Raffaella Fazio
- Department of Neurology, IRCCS "San Raffaele" Hospital, Milan, Italy
| | | | - Fabio Giannini
- Department of Medical and Surgery Sciences and Neurosciences, University of Siena, Siena, Italy
| | | | | | | | - Jessica Mandrioli
- Department of Neurosciences, S. Agostino-Estense Hospital, Modena, Italy
| | - Letizia Mazzini
- ALS Centre, Neurologic Clinic, Maggiore della Carità University Hospital, Novara, Italy
| | | | | | - Vladimiro Pietrini
- Department of Neurosciences, Neurology Unit, University of Parma, Parma, Italy
| | | | - Romana Rizzi
- Neurology Unit, Department of Neuro-Motor Diseases, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | | | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Paolo Volanti
- Intensive Neurorehabilitation Unit, IRCCS "Salvatore Maugeri" Foundation, Mistretta, Italy
| | - Irene Tramacere
- Neuroepidemiology Units, IRCCS Foundation, "Carlo Besta" Neurological Institute, Milan, Italy
| | - Graziella Filippini
- Neuroepidemiology Units, IRCCS Foundation, "Carlo Besta" Neurological Institute, Milan, Italy
| | | |
Collapse
|
8
|
Vaz AR, Cunha C, Gomes C, Schmucki N, Barbosa M, Brites D. Glycoursodeoxycholic acid reduces matrix metalloproteinase-9 and caspase-9 activation in a cellular model of superoxide dismutase-1 neurodegeneration. Mol Neurobiol 2014; 51:864-77. [PMID: 24848512 DOI: 10.1007/s12035-014-8731-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/29/2014] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects mainly motor neurons (MNs). NSC-34 MN-like cells carrying the G93A mutation in human superoxide dismutase-1 (hSOD1(G93A)) are a common model to study the molecular mechanisms of neurodegeneration in ALS. Although the underlying pathways of MN failure still remain elusive, increased apoptosis and oxidative stress seem to be implicated. Riluzole, the only approved drug, only slightly delays ALS progression. Ursodeoxycholic acid (UDCA), as well as its glycine (glycoursodeoxycholic acid, GUDCA) and taurine (TUDCA) conjugated species, have shown therapeutic efficacy in neurodegenerative models and diseases. Pilot studies in ALS patients indicate safety and tolerability for UDCA oral administration. We explored the mechanisms associated with superoxide dismutase-1 (SOD1) accumulation and MN degeneration in NSC-34/hSOD1(G93A) cells differentiated for 4 days in vitro (DIV). We examined GUDCA efficacy in preventing such pathological events and in restoring MN functionality by incubating cells with 50 μM GUDCA at 0 DIV and at 2 DIV, respectively. Increased cytosolic SOD1 inclusions were observed in 4 DIV NSC-34/hSOD1(G93A) cells together with decreased mitochondria viability (1.2-fold, p < 0.01), caspase-9 activation (1.8-fold, p < 0.05), and apoptosis (2.1-fold, p < 0.01). GUDCA exerted preventive effects (p < 0.05) while also reduced caspase-9 levels when added at 2 DIV (p < 0.05). ATP depletion (2-fold, p < 0.05), increased nitrites (1.6-fold, p < 0.05) and metalloproteinase-9 (MMP-9) activation (1.8-fold, p < 0.05), but no changes in MMP-2, were observed in the extracellular media of 4 DIV NSC-34/hSOD1(G93A) cells. GUDCA inhibited nitrite production (p < 0.05) while simultaneously prevented and reverted MMP-9 activation (p < 0.05), but not ATP depletion. Data highlight caspase-9 and MMP-9 activation as key pathomechanisms in ALS and GUDCA as a promising therapeutic strategy for slowing disease onset and progression.
Collapse
Affiliation(s)
- Ana Rita Vaz
- Research Institute for Medicines (iMed.ULisboa) and Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
9
|
Daniel B, Green O, Viskind O, Gruzman A. Riluzole increases the rate of glucose transport in L6 myotubes and NSC-34 motor neuron-like cells via AMPK pathway activation. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:434-43. [DOI: 10.3109/21678421.2013.808226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Li R, Strykowski R, Meyer M, Mulcrone P, Krakora D, Suzuki M. Male-specific differences in proliferation, neurogenesis, and sensitivity to oxidative stress in neural progenitor cells derived from a rat model of ALS. PLoS One 2012; 7:e48581. [PMID: 23144905 PMCID: PMC3493558 DOI: 10.1371/journal.pone.0048581] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/03/2012] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor dysfunction and the loss of large motor neurons in the spinal cord and brain stem. A clear genetic link to point mutations in the superoxide dismutase 1 (SOD1) gene has been shown in a small group of familial ALS patients. The exact etiology of ALS is still uncertain, but males have consistently been shown to be at a higher risk for the disease than females. Here we present male-specific effects of the mutant SOD1 transgene on proliferation, neurogenesis, and sensitivity to oxidative stress in rat neural progenitor cells (rNPCs). E14 pups were bred using SOD1(G93A) transgenic male rats and wild-type female rats. The spinal cord and cortex tissues were collected, genotyped by PCR using primers for the SOD1(G93A) transgene or the male-specific Sry gene, and cultured as neurospheres. The number of dividing cells was higher in male rNPCs compared to female rNPCs. However, SOD1(G93A) over-expression significantly reduced cell proliferation in male cells but not female cells. Similarly, male rNPCs produced more neurons compared to female rNPCs, but SOD1(G93A) over-expression significantly reduced the number of neurons produced in male cells. Finally we asked whether sex and SOD1(G93A) transgenes affected sensitivity to oxidative stress. There was no sex-based difference in cell viability after treatment with hydrogen peroxide or 3-morpholinosydnonimine, a free radical-generating agent. However, increased cytotoxicity by SOD1(G93A) over-expression occurred, especially in male rNPCs. These results provide essential information on how the mutant SOD1 gene and sexual dimorphism are involved in ALS disease progression.
Collapse
Affiliation(s)
- Ruojia Li
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rachel Strykowski
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael Meyer
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patrick Mulcrone
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dan Krakora
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
11
|
Maiese K, Chong ZZ, Shang YC, Wang S. Erythropoietin: new directions for the nervous system. Int J Mol Sci 2012; 13:11102-11129. [PMID: 23109841 PMCID: PMC3472733 DOI: 10.3390/ijms130911102] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/16/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022] Open
Abstract
New treatment strategies with erythropoietin (EPO) offer exciting opportunities to prevent the onset and progression of neurodegenerative disorders that currently lack effective therapy and can progress to devastating disability in patients. EPO and its receptor are present in multiple systems of the body and can impact disease progression in the nervous, vascular, and immune systems that ultimately affect disorders such as Alzheimer's disease, Parkinson's disease, retinal injury, stroke, and demyelinating disease. EPO relies upon wingless signaling with Wnt1 and an intimate relationship with the pathways of phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). Modulation of these pathways by EPO can govern the apoptotic cascade to control β-catenin, glycogen synthase kinase-3β, mitochondrial permeability, cytochrome c release, and caspase activation. Yet, EPO and each of these downstream pathways require precise biological modulation to avert complications associated with the vascular system, tumorigenesis, and progression of nervous system disorders. Further understanding of the intimate and complex relationship of EPO and the signaling pathways of Wnt, PI 3-K, Akt, and mTOR are critical for the effective clinical translation of these cell pathways into robust treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| |
Collapse
|