1
|
Wang Z, Han S, Xu Z, Du P, Li X. Assessment on the adverse effects on different kinds of fish induced by methamphetamine during the natural attenuation process based on adverse outcome pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146587. [PMID: 33773348 DOI: 10.1016/j.scitotenv.2021.146587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The adverse effects on model fish induced by methamphetamine (METH) have been revealed. However, the toxicity of METH on different kinds of non-model fish during the natural attenuation remained unclear. Hence, in this study, we for the first time established a static lab-scale aquatic ecosystem spiked with METH (initial levels at 25 μg/L) for 40 days to estimate its metabolism and toxicity in Chinese medaka, rosy bitterling, loach, and mosquito fish. The concentrations of METH in water and fish's brain were detected termly. The physiological functions, histopathology of brain, neurotransmitters contents, and expressions of associated genes of the four kinds of fish were determined at day 0, 20, and 40, respectively. The results indicated METH could be remarkably accumulated in fish brains with the distribution factor vs water (DFw) at 232.5-folds, and attenuated both in water and fish body during the exposure. METH caused physiological functions (i.e., swimming trajectories, locomotion distances, and feeding rates) disorders of the four kinds of fish, and stimulated surfacing behavior of loach. Tissue and macro/micromolecular biomarkers including histopathology, neurotransmitters (i.e., dopamine, serotonin, and norepinephrine), and mRNA, were similarly affected by METH. Mitogen-activated protein kinase (MAPKs) signaling pathway, P53-regulated apoptosis signaling pathway, N-methyl-d-aspartate-dopamine system, and mTOR signaling pathway of different kinds of fish were regulated by METH. Additionally, the impairments of the physiological and macromolecular indicators of fish could be alleviated as the natural attenuation of METH occurred. All the biomarkers, as well as the recovery effects during the exposure were integrated onto an adverse outcome pathway (AOP) framework. The key event was the micromolecular indicators (genes). The adverse outcomes at individual and population levels would result in the ecological consequences, implying the imperative to consider the natural attenuation process while assessing the environmental risk of METH.
Collapse
Affiliation(s)
- Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Sheng Han
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Zeqiong Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| |
Collapse
|
2
|
Tangmansakulchai K, Abubakar Z, Kitiyanant N, Suwanjang W, Leepiyasakulchai C, Govitrapong P, Chetsawang B. Calpastatin overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human neuroblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion. Mitochondrion 2016; 30:151-61. [DOI: 10.1016/j.mito.2016.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
3
|
Mohammad Ahmadi Soleimani S, Ekhtiari H, Cadet JL. Drug-induced neurotoxicity in addiction medicine: From prevention to harm reduction. PROGRESS IN BRAIN RESEARCH 2015; 223:19-41. [PMID: 26806769 DOI: 10.1016/bs.pbr.2015.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neurotoxicity is considered as a major cause of neurodegenerative disorders. Most drugs of abuse have nonnegligible neurotoxic effects many of which are primarily mediated by several dopaminergic and glutamatergic neurotransmitter systems. Although many researchers have investigated the medical and cognitive consequences of drug abuse, the neurotoxicity induced by these drugs still requires comprehensive attention. The science of neurotoxicity promises to improve preventive and therapeutic strategies for brain disorders such as Alzheimer disease and Parkinson's disease. However, its clinical applications for addiction medicine remain to be defined adequately. This chapter reviews the most commonly discussed mechanisms underlying neurotoxicity induced by common drugs of abuse including amphetamines, cocaine, opiates, and alcohol. In addition, the known factors that trigger and/or predispose to drug-induced neurotoxicity are discussed. These factors include drug-related, individual-related, and environmental insults. Moreover, we introduce some of the potential pharmacological antineurotoxic interventions deduced from experimental animal studies. These interventions involve various targets such as dopaminergic system, mitochondria, cell death signaling, and NMDA receptors, among others. We conclude the chapter with a discussion of addicted patients who might benefit from such interventions.
Collapse
Affiliation(s)
- S Mohammad Ahmadi Soleimani
- Neurocognitive Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Ekhtiari
- Neurocognitive Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Translational Neuroscience Program, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
4
|
Andres MA, Cooke IM, Bellinger FP, Berry MJ, Zaporteza MM, Rueli RH, Barayuga SM, Chang L. Methamphetamine acutely inhibits voltage-gated calcium channels but chronically up-regulates L-type channels. J Neurochem 2015; 134:56-65. [PMID: 25807982 DOI: 10.1111/jnc.13104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 11/30/2022]
Abstract
In neurons, calcium (Ca(2+) ) channels regulate a wide variety of functions ranging from synaptic transmission to gene expression. They also induce neuroplastic changes that alter gene expression following psychostimulant administration. Ca(2+) channel blockers have been considered as potential therapeutic agents for the treatment of methamphetamine (METH) dependence because of their ability to reduce drug craving among METH users. Here, we studied the effects of METH exposure on voltage-gated Ca(2+) channels using SH-SY5Y cells as a model of dopaminergic neurons. We found that METH has different short- and long-term effects. A short-term effect involves immediate (< 5 min) direct inhibition of Ca(2+) ion movements through Ca(2+) channels. Longer exposure to METH (20 min or 48 h) selectively up-regulates the expression of only the CACNA1C gene, thus increasing the number of L-type Ca(2+) channels. This up-regulation of CACNA1C is associated with the expression of the cAMP-responsive element-binding protein (CREB), a known regulator of CACNA1C gene expression, and the MYC gene, which encodes a transcription factor that putatively binds to a site proximal to the CACNA1C gene transcription initiation site. The short-term inhibition of Ca(2+) ion movement and later, the up-regulation of Ca(2+) channel gene expression together suggest the operation of cAMP-responsive element-binding protein- and C-MYC-mediated mechanisms to compensate for Ca(2+) channel inhibition by METH. Increased Ca(2+) current density and subsequent increased intracellular Ca(2+) may contribute to the neurodegeneration accompanying chronic METH abuse. Methamphetamine (METH) exposure has both short- and long-term effects. Acutely, methamphetamine directly inhibits voltage-gated calcium channels. Chronically, neurons compensate by up-regulating the L-type Ca(2+) channel gene, CACNA1C. This compensatory mechanism is mediated by transcription factors C-MYC and CREB, in which CREB is linked to the dopamine D1 receptor signaling pathway. These findings suggest Ca(2+) -mediated neurotoxicity owing to over-expression of calcium channels.
Collapse
Affiliation(s)
- Marilou A Andres
- Bekesy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii, Honolulu, Hawaii, USA
| | - Ian M Cooke
- Bekesy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii, Honolulu, Hawaii, USA.,Department of Biology, University of Hawaii, Honolulu, Hawaii, USA
| | - Frederick P Bellinger
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Marla J Berry
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Maribel M Zaporteza
- Bekesy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii, Honolulu, Hawaii, USA
| | - Rachel H Rueli
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Stephanie M Barayuga
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Linda Chang
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
5
|
Jumnongprakhon P, Govitrapong P, Tocharus C, Tungkum W, Tocharus J. Protective effect of melatonin on methamphetamine-induced apoptosis in glioma cell line. Neurotox Res 2013; 25:286-94. [PMID: 23975636 DOI: 10.1007/s12640-013-9419-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 12/24/2022]
Abstract
Methamphetamine (METH) is a highly addictive drug causing neurodegenerative diseases. METH has been known to be neurotoxic by inducing oxidative stress, free radical, and pro-inflammatory cytokines. Previous studies have shown that METH could induce neuron and glial cell death, especially inducing glial cell-mediated neurotoxicity that plays a critical role in stress-induced central nervous system damage. Therefore, the aim of the present study is to explore the mechanisms of METH-induced cell death in the glial cell. METH-induced glial cells death is mediated via mitochondrial damage pathway. METH activates the upregulation of the Bax, cytochrome c, cleavage caspase 9 and 3 proteins, and downregulation of Bcl-XL protein in cascade. Pretreatment with melatonin, a neurohormone secreted by the pineal gland, effectively reduced glial cell death. Moreover, melatonin increased the Bcl-XL/Bax ratio but reduced the level of cytochrome c, cleavage caspase 9 and 3 proteins. Therefore, these results demonstrated that melatonin could reduce the cytotoxic effect of METH by decreasing the mitochondrial death pathway activation in glial cells. This outcome suggests that melatonin might be beneficial as the neuroprotection in neurodegenerative diseases caused by METH or other pathogens.
Collapse
Affiliation(s)
- Pichaya Jumnongprakhon
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | | | | | | |
Collapse
|
6
|
Taurine attenuates methamphetamine-induced autophagy and apoptosis in PC12 cells through mTOR signaling pathway. Toxicol Lett 2012; 215:1-7. [DOI: 10.1016/j.toxlet.2012.09.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/18/2012] [Accepted: 09/25/2012] [Indexed: 11/23/2022]
|
7
|
Suwanjang W, Phansuwan-Pujito P, Govitrapong P, Chetsawang B. Calpastatin reduces calpain and caspase activation in methamphetamine-induced toxicity in human neuroblastoma SH-SY5Y cultured cells. Neurosci Lett 2012; 526:49-53. [DOI: 10.1016/j.neulet.2012.07.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/11/2012] [Accepted: 07/29/2012] [Indexed: 10/28/2022]
|