1
|
Rashtiani S, Goudarzi I, Jafari A, Rohampour K. Adenosine monophosphate activated protein kinase (AMPK) is essential for the memory improving effect of adiponectin. Neurosci Lett 2021; 749:135721. [PMID: 33582189 DOI: 10.1016/j.neulet.2021.135721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/04/2020] [Accepted: 02/05/2021] [Indexed: 11/28/2022]
Abstract
Adiponectin (APN) plays a major role in the regulation of insulin sensitivity and glucose homeostasis. Insulin and APN have a positive effect on memory. In this study, we examined whether the inhibition of AMPK could block the memory improving effect of APN or affect the IRS1 expression. Animal model of AD was developed by intracerebroventricular (icv) injection of 3 mg/kg streptozotocin (STZ), in 12 weeks old Wistar rats, on days 1 and 3 after cannulation. Dorsomorphin (DM) and APN (600 nM) were injected 30 and 20 min before the acquisition phase, respectively. DM was applied in 3 different doses (0.2, 2 and 20 μM). All behavioral tests were performed on days 15 and 16; the Preference Index (PI) was calculated for novel object recognition (NOR) test, while the step through latency (STL) and total time in dark compartment (TDC) were recorded and analyzed for the passive avoidance task. Relative expression of insulin receptor substrate-1 (IRS-1) protein in the hippocampus was measured by western blotting. In early retrieval test, STZ + APN treatment increased STL (P < 0.0001) and decreased TDC (P < 0.05) in comparison to STZ group, while STZ + APN + DM (2μM) caused a decrease in STL (P < 0.05) and increase in TDC (0.2μM and 2μM DM; P < 0.05). Icv injection of DM (0.2μM and 2μM) before APN decreased the PI significantly (P < 0.05) in comparison to STZ + APN group. APN treatment raised the IRS-1 expression and DM reversed this increment, significantly (P < 0.0001). It is concluded that the memory improving effect of APN is mediated, at least in part, by the AMPK pathway. APN is also able to boost insulin signaling by overexpression of IRS-1 in the hippocampus.
Collapse
Affiliation(s)
| | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran
| | - Adele Jafari
- Neuroscience Research Center, Department of Physiology, Guilan University of Medical Sciences, Rasht, Iran
| | - Kambiz Rohampour
- Neuroscience Research Center, Department of Physiology, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
2
|
Adiponectin Single Nucleotide Polymorphisms and Serum Levels Are Relevant to Prognosis of Patients With Aneurysmal Subarachnoid Hemorrhages. Am J Ther 2018; 24:e308-e316. [PMID: 26760913 DOI: 10.1097/mjt.0000000000000437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate the association of adiponectin gene polymorphisms and its levels with aneurysmal subarachnoid hemorrhages (aSAHs) prognosis. This case-control study enrolled 138 patients with aSAH and 102 healthy controls as case group and control group, respectively. Prognosis of case group was evaluated using Glasgow Outcome Scale. Polymerase chain reaction-restriction fragment length polymorphism was used to examine the genotypes of 45T>G and -11377C>G. Enzyme-linked immunosorbent assay was used to detect adiponectin levels. Logistic regression analysis was applied to assess the association of adiponectin gene polymorphism with aSAH prognosis. Case group had increased GG genotype and G allele genotype frequencies of 45T>G and -11377C>G compared with control group (all P < 0.01). In case group, TT genotype had the highest adiponectin level compared with both TG and GC genotypes (both P < 0.05). As for -11377C>G, GG genotype had the lowest adiponectin levels, followed by CG genotype and CC genotype in both groups (P < 0.05). In general, case group had decreased adiponectin levels compared with control group (P < 0.05). Univariate analysis showed that hypertension, Hunt-Hess grade, aneurysm size, aneurysms multiplicity and -11377C>G were associated with aSAH prognosis, while multivariate logistic regression analysis confirmed that hypertension, Hunt-Hess grade, residual flow in aneurysms and aneurysm size were independent risk factors for aSAH prognosis. Decreased adiponectin levels may be a pathological index for aSAH, which may be explain by the G allele of -11377C>G in adiponectin. Moreover, hypertension, Hunt-Hess grade, residual flow in aneurysms and aneurysm size may be independent risk factors for aSAH prognosis.
Collapse
|
3
|
Abstract
Stroke is considered to be an acute cerebrovascular disease, including ischemic stroke and hemorrhagic stroke. The high incidence and poor prognosis of stroke suggest that it is a highly disabling and highly lethal disease which can pose a serious threat to human health. Nitric oxide (NO), a common gas in nature, which is often thought as a toxic gas, because of its intimate relationship with the pathological processes of many diseases, especially in the regulation of blood flow and cell inflammation. However, recent years have witnessed an increased interest that NO plays a significant and positive role in stroke as an essential gas signal molecule. In view of the fact that the neuroprotective effect of NO is closely related to its concentration, cell type and time, only in the appropriate circumstances can NO play a protective effect. The purpose of this review is to summarize the roles of NO in ischemic stroke and hemorrhagic stroke.
Collapse
Affiliation(s)
- Zhou-Qing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ru-Tao Mou
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dong-Xia Feng
- Department of Scott & White Clinic-Temple, Temple, TX, USA
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Schubert KM, Qiu J, Blodow S, Wiedenmann M, Lubomirov LT, Pfitzer G, Pohl U, Schneider H. The AMP-Related Kinase (AMPK) Induces Ca
2+
-Independent Dilation of Resistance Arteries by Interfering With Actin Filament Formation. Circ Res 2017; 121:149-161. [DOI: 10.1161/circresaha.116.309962] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 05/23/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
Rationale:
Decreasing Ca
2+
sensitivity of vascular smooth muscle (VSM) allows for vasodilation without lowering of cytosolic Ca
2+
. This may be particularly important in states requiring maintained dilation, such as hypoxia. AMP-related kinase (AMPK) is an important cellular energy sensor in VSM. Regulation of Ca
2+
sensitivity usually is attributed to myosin light chain phosphatase activity, but findings in non-VSM identified changes in the actin cytoskeleton. The potential role of AMPK in this setting is widely unknown.
Objective:
To assess the influence of AMPK on the actin cytoskeleton in VSM of resistance arteries with regard to potential Ca
2+
desensitization of VSM contractile apparatus.
Methods and Results:
AMPK induced a slowly developing dilation at unchanged cytosolic Ca
2+
levels in potassium chloride–constricted intact arteries isolated from mouse mesenteric tissue. This dilation was not associated with changes in phosphorylation of myosin light chain or of myosin light chain phosphatase regulatory subunit. Using ultracentrifugation and confocal microscopy, we found that AMPK induced depolymerization of F-actin (filamentous actin). Imaging of arteries from LifeAct mice showed F-actin rarefaction in the midcellular portion of VSM. Immunoblotting revealed that this was associated with activation of the actin severing factor cofilin. Coimmunoprecipitation experiments indicated that AMPK leads to the liberation of cofilin from 14-3-3 protein.
Conclusions:
AMPK induces actin depolymerization, which reduces vascular tone and the response to vasoconstrictors. Our findings demonstrate a new role of AMPK in the control of actin cytoskeletal dynamics, potentially allowing for long-term dilation of microvessels without substantial changes in cytosolic Ca
2+
.
Collapse
Affiliation(s)
- Kai Michael Schubert
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Jiehua Qiu
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Stephanie Blodow
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Margarethe Wiedenmann
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Lubomir T. Lubomirov
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Gabriele Pfitzer
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Ulrich Pohl
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Holger Schneider
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| |
Collapse
|
5
|
Yang B, Wang S, Yu S, Chen Y, Li L, Zhang H, Zhao Y. C1q/tumor necrosis factor-related protein 3 inhibits oxidative stress during intracerebral hemorrhage via PKA signaling. Brain Res 2017; 1657:176-184. [DOI: 10.1016/j.brainres.2016.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 01/20/2023]
|
6
|
Letra L, Sena C. Cerebrovascular Disease: Consequences of Obesity-Induced Endothelial Dysfunction. ADVANCES IN NEUROBIOLOGY 2017; 19:163-189. [PMID: 28933065 DOI: 10.1007/978-3-319-63260-5_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the well-known global impact of overweight and obesity in the incidence of cerebrovascular disease, many aspects of this association are still inconsistently defined. In this chapter we aim to present a critical review on the links between obesity and both ischemic and hemorrhagic stroke and discuss its influence on functional outcomes, survival, and current treatments to acute and chronic stroke. The role of cerebrovascular endothelial function and respective modulation is also described as well as its laboratory and clinical assessment. In this context, the major contributing mechanisms underlying obesity-induced cerebral endothelial function (adipokine secretion, insulin resistance, inflammation, and hypertension) are discussed. A special emphasis is given to the participation of adipokines in the pathophysiology of stroke, namely adiponectin, leptin, resistin, apelin, and visfatin.
Collapse
Affiliation(s)
- Liliana Letra
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal. .,Neurology Department, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal.
| | - Cristina Sena
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Li Q, Chen Y, Zhang X, Zuo S, Ge H, Chen Y, Liu X, Zhang JH, Ruan H, Feng H. Scutellarin attenuates vasospasm through the Erk5-KLF2-eNOS pathway after subarachnoid hemorrhage in rats. J Clin Neurosci 2016; 34:264-270. [PMID: 27742373 DOI: 10.1016/j.jocn.2016.09.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/19/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022]
Abstract
Angiographic vasospasm, especially in the early phases (<72h) of subarachnoid hemorrhage (SAH), is one of the major complications after an aneurysm rupture and is often the cause of delayed neurological deterioration. Scutellarin (SCU), a flavonoid extracted from the traditional Chinese herb Erigeron breviscapus, has been widely accepted as an antioxidant, but the effect of SCU on vasospasm after SAH remains elusive. Endovascular perforation was conducted to induce SAH in Sprague-Dawley rats. Then, the underlying mechanism of the anti-vasospasm effect of SCU was investigated using a modified Garcia scale, India ink angiography, cross-sectional area analysis, immunohistochemistry staining and western blot. SCU (50μM, 100mg/kg) alleviated angiographic vasospasm and improved neurological function 48h after SAH and enhanced the expression of endothelial nitric oxide synthase (eNOS) at the intima of cerebral arteries. In addition, SCU upregulated the expression of phosphorylated extracellular-regulated kinase 5 (p-Erk5) and Kruppel-like factor 2 (KLF2) at 48h after SAH. However, the effects of SCU were reversed by the Erk5 inhibitor XMD8-92. Our results indicate that SCU could attenuate vasospasm and neurological deficits via modulating the Erk5-KLF2-eNOS pathway after SAH, which may provide an experimental basis for the clinical use of SCU treatment in SAH patients.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Shapingba District, Chongqing 400038, China; Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Xuan Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Shilun Zuo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Hongfei Ge
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Yanyan Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - John H Zhang
- Department of Anesthesiology, Neurosurgery and Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Huaizhen Ruan
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, 29 Gaotanyan Street, Shapingba District, Chongqing 400038, China.
| |
Collapse
|
8
|
The emerging role of adiponectin in cerebrovascular and neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1887-94. [DOI: 10.1016/j.bbadis.2015.06.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/10/2015] [Accepted: 06/23/2015] [Indexed: 02/06/2023]
|
9
|
Guo ZN, Shao A, Tong LS, Sun W, Liu J, Yang Y. The Role of Nitric Oxide and Sympathetic Control in Cerebral Autoregulation in the Setting of Subarachnoid Hemorrhage and Traumatic Brain Injury. Mol Neurobiol 2015; 53:3606-3615. [DOI: 10.1007/s12035-015-9308-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022]
|
10
|
Temporal profile of plasma adiponectin level and delayed cerebral ischemia in patients with subarachnoid hemorrhage. J Clin Neurosci 2014; 21:1007-10. [DOI: 10.1016/j.jocn.2013.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/06/2013] [Accepted: 10/13/2013] [Indexed: 11/19/2022]
|
11
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
12
|
Li X, Geng J, Liu J. Adiponectin offers protection against L166P mutant DJ-1-induced neuronal cytotoxicity mediated by APPL1-dependent AMPK activation. Int J Neurosci 2013; 124:350-61. [PMID: 24047115 DOI: 10.3109/00207454.2013.846340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. L166P mutant DJ-1 has been linked with a genetic form of the disease. Preventing neurotoxicity of DJ-1 familial mutations has become a new therapeutic target for PD. Adiponectin, the most abundantly secreted adipokine, has displayed its protective roles in pathologies of various types of diseases. In this study, we investigate whether adiponectin is protective against neurotoxicity induced by familial L166P mutant DJ-1 in PD. Our results demonstrate that adiponectin treatment could attenuate increased levels of reactive oxygen species and nitric oxide induced by the DJ-1L166P mutation. In addition, adiponectin could rescue impaired mitochondrial membrane potential induced by DJ-1L166P. Importantly, we verified that both adiponectin receptors, type 1 (AdipoR1) and type 2 (AdipoR2), are expressed in human neuroblastoma M17 cells. Our results also demonstrate that the protective effects of adiponectin against DJ-1L166P-induced neuronal cytotoxicity under 1-methyl-4-phenylpyridinium ion (MPP+) treatment require binding of adiponectin to its cell surface receptors. Finally, we found that the protective effects of adiponectin against DJ-1L166P depend on AMP-activated protein kinase (AMPK) activation mediated by the endosomal adaptor protein, APPL1 (adaptor protein with phosphotyrosine binding, pleckstrin homology domains and leucine zipper motif). These data suggest that adiponectin may have potential for implementation in novel therapies against PD.
Collapse
Affiliation(s)
- Xuemei Li
- 1Department of Neurology, Affiliated Hospital of Weifang Medical University , Weifang, Shangdong Province , China and
| | | | | |
Collapse
|
13
|
Nitric oxide in cerebral vasospasm: theories, measurement, and treatment. Neurol Res Int 2013; 2013:972417. [PMID: 23878735 PMCID: PMC3708422 DOI: 10.1155/2013/972417] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 05/23/2013] [Accepted: 05/28/2013] [Indexed: 12/22/2022] Open
Abstract
In recent decades, a large body of research has focused on the role of nitric oxide (NO) in the development of cerebral vasospasm (CV) following subarachnoid hemorrhage (SAH). Literature searches were therefore conducted regarding the role of NO in cerebral vasospasm, specifically focusing on NO donors, reactive nitrogen species, and peroxynitrite in manifestation of vasospasm. Based off the assessment of available evidence, two competing theories are reviewed regarding the role of NO in vasospasm. One school of thought describes a deficiency in NO due to scavenging by hemoglobin in the cisternal space, leading to an NO signaling deficit and vasospastic collapse. A second hypothesis focuses on the dysfunction of nitric oxide synthase, an enzyme that synthesizes NO, and subsequent generation of reactive nitrogen species. Both theories have strong experimental evidence behind them and hold promise for translation into clinical practice. Furthermore, NO donors show definitive promise for preventing vasospasm at the angiographic and clinical level. However, NO augmentation may also cause systemic hypotension and worsen vasospasm due to oxidative distress. Recent evidence indicates that targeting NOS dysfunction, for example, through erythropoietin or statin administration, also shows promise at preventing vasospasm and neurotoxicity. Ultimately, the role of NO in neurovascular disease is complex. Neither of these theories is mutually exclusive, and both should be considered for future research directions and treatment strategies.
Collapse
|
14
|
Siasios I, Kapsalaki EZ, Fountas KN. Cerebral vasospasm pharmacological treatment: an update. Neurol Res Int 2013; 2013:571328. [PMID: 23431440 PMCID: PMC3572649 DOI: 10.1155/2013/571328] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/27/2012] [Indexed: 11/17/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage- (aSAH-) associated vasospasm constitutes a clinicopathological entity, in which reversible vasculopathy, impaired autoregulatory function, and hypovolemia take place, and lead to the reduction of cerebral perfusion and finally ischemia. Cerebral vasospasm begins most often on the third day after the ictal event and reaches the maximum on the 5th-7th postictal days. Several therapeutic modalities have been employed for preventing or reversing cerebral vasospasm. Triple "H" therapy, balloon and chemical angioplasty with superselective intra-arterial injection of vasodilators, administration of substances like magnesium sulfate, statins, fasudil hydrochloride, erythropoietin, endothelin-1 antagonists, nitric oxide progenitors, and sildenafil, are some of the therapeutic protocols, which are currently employed for managing patients with aSAH. Intense pathophysiological mechanism research has led to the identification of various mediators of cerebral vasospasm, such as endothelium-derived, vascular smooth muscle-derived, proinflammatory mediators, cytokines and adhesion molecules, stress-induced gene activation, and platelet-derived growth factors. Oral, intravenous, or intra-arterial administration of antagonists of these mediators has been suggested for treating patients suffering a-SAH vasospam. In our current study, we attempt to summate all the available pharmacological treatment modalities for managing vasospasm.
Collapse
Affiliation(s)
- Ioannis Siasios
- Department of Neurosurgery, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Eftychia Z. Kapsalaki
- Department of Diagnostic Radiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Kostas N. Fountas
- Department of Neurosurgery, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
- Institute of Biomolecular & Biomedical Research (BIOMED), Center for Research and Technology - Thessaly (CERETETH), 38500 Larissa, Greece
| |
Collapse
|
15
|
Pascual JM. Unsuspected stroke signals: From extravascular blood to vessel lumen. Neurosci Lett 2012; 514:1. [DOI: 10.1016/j.neulet.2012.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|