1
|
Yu Z. Neuromechanism of acupuncture regulating gastrointestinal motility. World J Gastroenterol 2020; 26:3182-3200. [PMID: 32684734 PMCID: PMC7336328 DOI: 10.3748/wjg.v26.i23.3182] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/29/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acupuncture has been used in China for thousands of years and has become more widely accepted by doctors and patients around the world. A large number of clinical studies and animal experiments have confirmed that acupuncture has a benign adjustment effect on gastrointestinal (GI) movement; however, the mechanism of this effect is unclear, especially in terms of neural mechanisms, and there are still many areas that require further exploration. This article reviews the recent data on the neural mechanism of acupuncture on GI movements. We summarize the neural mechanism of acupuncture on GI movement from four aspects: acupuncture signal transmission, the sympathetic and parasympathetic nervous system, the enteric nervous system, and the central nervous system.
Collapse
Affiliation(s)
- Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
2
|
The Roles of GABA in Ischemia-Reperfusion Injury in the Central Nervous System and Peripheral Organs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4028394. [PMID: 31814874 PMCID: PMC6878816 DOI: 10.1155/2019/4028394] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/27/2019] [Accepted: 10/18/2019] [Indexed: 12/30/2022]
Abstract
Ischemia-reperfusion (I/R) injury is a common pathological process, which may lead to dysfunctions and failures of multiple organs. A flawless medical way of endogenous therapeutic target can illuminate accurate clinical applications. γ-Aminobutyric acid (GABA) has been known as a marker in I/R injury of the central nervous system (mainly in the brain) for a long time, and it may play a vital role in the occurrence of I/R injury. It has been observed that throughout cerebral I/R, levels, syntheses, releases, metabolisms, receptors, and transmissions of GABA undergo complex pathological variations. Scientists have investigated the GABAergic enhancers for attenuating cerebral I/R injury; however, discussions on existing problems and mechanisms of available drugs were seldom carried out so far. Therefore, this review would summarize the process of pathological variations in the GABA system under cerebral I/R injury and will cover corresponding probable issues and mechanisms in using GABA-related drugs to illuminate the concern about clinical illness for accurately preventing cerebral I/R injury. In addition, the study will summarize the increasing GABA signals that can prevent I/R injuries occurring in peripheral organs, and the roles of GABA were also discussed correspondingly.
Collapse
|
3
|
Gao L, Zhao H, Zhu T, Liu Y, Hu L, Liu Z, Huang H, Chen F, Deng Z, Chu D, Du D. The Regulatory Effects of Lateral Hypothalamus Area GABA B Receptor on Gastric Ischemia-Reperfusion Injury in Rats. Front Physiol 2017; 8:722. [PMID: 28983255 PMCID: PMC5613147 DOI: 10.3389/fphys.2017.00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022] Open
Abstract
HIGHLIGHTSThe aim of the research was to determine the functional effects and molecular mechanisms of GABAB receptor on ischemia reperfusion-induced gastric injury in rats. The lateral hypothalamus area GABAB receptor attenuated the ischemia reperfusion-induced gastric injury by up-regulating the production of GABA, GABABR, and down-regulating P-GABABR in the brain. This work would provide a new therapeutic strategy for acute gastric injury.
Gastric ischemia-reperfusion (GI-R) injury progression is largely associated with excessive activation of the greater splanchnic nerve (GSN). This study aims to investigate the protective effects of GABAB receptor (GABABR) in the lateral hypothalamic area (LHA) on GI-R injury. A model of GI-R injury was established by clamping the celiac artery for 30 min and then reperfusion for 1 h. The coordinate of FN and LHA was identified in Stereotaxic Coordinates and then the L-Glu was microinjected into FN, GABAB receptor agonist baclofen, or GABAB receptor antagonist CGP35348 was microinjected into the LHA, finally the GI-R model was prepared. The expression of GABABR, P-GABABR, NOX2, NOX4, and SOD in the LHA was detected by western blot, PCR, and RT-PCR. The expression of IL-1β, NOX2, and NXO4 in gastric mucosa was detected by western blot. We found that microinjection of L-Glu into the FN or GABAB receptor agonist (baclofen) into the LHA attenuated GI-R injury. Pretreatment with GABAB receptor antagonist CGP35348 reversed the protective effects of FN stimulation or baclofen into the LHA. Microinjection of baclofen into the LHA obviously reduced the expression of inflammatory factor IL-1β, NOX2, and NOX4 in the gastric mucosa. Conclusion: The protective effects of microinjection of GABABR agonist into LHA on GI-R injury in rats could be mediated by up-regulating the production of GABA, GABABR, and down-regulating P-GABABR in the LHA.
Collapse
Affiliation(s)
- Lin Gao
- Neurology Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Huiru Zhao
- Shanghai Key Laboratory of Bio-Crops, College of Life Science, Shanghai UniversityShanghai, China
| | - Tao Zhu
- Department of Life Science, Heze UniversityHeze, China
| | - Yeliu Liu
- Department of General Surgery, Huai'an First People's Hospital, Nanjing Medical UniversityHuai'an, China
| | - Li Hu
- Shanghai Key Laboratory of Bio-Crops, College of Life Science, Shanghai UniversityShanghai, China
| | - Zhenguo Liu
- Shanghai Key Laboratory of Bio-Crops, College of Life Science, Shanghai UniversityShanghai, China
| | - Hai Huang
- Shanghai Key Laboratory of Bio-Crops, College of Life Science, Shanghai UniversityShanghai, China
| | - Fuxue Chen
- Shanghai Key Laboratory of Bio-Crops, College of Life Science, Shanghai UniversityShanghai, China
| | - Zhenxu Deng
- Department of Life Science, Heze UniversityHeze, China
| | - Dechang Chu
- Department of Life Science, Heze UniversityHeze, China
| | - Dongshu Du
- Neurology Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China.,Shanghai Key Laboratory of Bio-Crops, College of Life Science, Shanghai UniversityShanghai, China
| |
Collapse
|
4
|
Sgambato D, Capuano A, Sullo MG, Miranda A, Federico A, Romano M. Gut-Brain Axis in Gastric Mucosal Damage and Protection. Curr Neuropharmacol 2017; 14:959-966. [PMID: 26903151 PMCID: PMC5333589 DOI: 10.2174/1570159x14666160223120742] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/18/2015] [Accepted: 02/07/2016] [Indexed: 02/03/2023] Open
Abstract
Abstract: Background The gut-brain axis plays a potential role in numerous physiological and pathological conditions. Several substances link stomach with central nervous system. In particular, hypothalamo-pituitary-adrenocortical axis, thyrotropin-releasing factor-containing nerve fibers and capsaicin-sensitive nerves are principal mediators of the harmful and protective central nervous system-mediated effects on gastric mucosa. Also, existing evidence indicates that nitric oxide, prostaglandins and calcitonin gene-related peptide play a role as final effectors of gastric protection. Methods We undertook a structured search of bibliographic databases for peer-reviewed research literature with the aim of focusing on the role of gut-brain axis in gastric damage and protection. In particular, we examined manuscripts dealing with the role of steroids, thyrotropin-releasing hormone, prostaglandins, melatonin, hydrogen sulfide and peptides influencing food intake (i.e. leptin, cholecystokinin, peptide YY, central glucagon–like peptide-1, and ghrelin). Also, the role of GABAergic and glutamatergic pathways in gastric mucosal protection have been examined. Results We found and reviewed 61 peer-reviewed papers dealing with the major aspects related to the role of gut brain axis in gastric mucosal damage and protection. Conclusions A dense neuronal network links stomach with central nervous system and a number of neurotransmitters and peptides functionally and anatomically related to central nervous system play a major role in contributing to gastric mucosal integrity. Exploiting the mechanisms underlying the connection between brain and gut may lead to a better understanding of the pathophysiology of gastric mucosal injury and to an improvement in the prevention and, eventually, management of gastric damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Marco Romano
- Division of Hepato-Gastroenterology, Department of Clinical and Experimental Medicine, Second University of Naples, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
5
|
Participation of NMDA receptors in the lateral hypothalamus in gastric erosion induced by cold-water restraint. Physiol Behav 2014; 140:209-14. [PMID: 25542887 DOI: 10.1016/j.physbeh.2014.12.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 11/22/2022]
Abstract
The present study investigated whether neurons in the lateral hypothalamus (LH) play a role in the occurrence of gastric ulcerations induced by cold-water restraint. The first experiment indicated that bilateral N-methyl-d-aspartate (NMDA) lesions of the LH (20μg/1μl per side) reduced the amount of gastric ulceration induced by cold-water restraint. In the second experiment, the NMDA antagonist DL-2-amino-5-phosphonovaleric acid (APV; 2.5μg/0.5μl per side) or its vehicle was microinjected bilaterally into the LH prior to the cold-water restraint procedure. APV did not induce gastric ulcerations but reduced the amount of ulceration induced by cold-water restraint. These results indicate that NMDA receptors in the LH play an important role in the occurrence of gastric ulceration induced by cold-water restraint. The participation of the LH and possible neuronal circuitry involved in stress-induced ulceration are discussed.
Collapse
|
6
|
Gao L, Zhu T, Xie G, Lou X, Li S, Zhou Y, Deng Z, Chu D, Lou J, Du D. GABA(A) receptor overexpression in the lateral hypothalamic area attenuates gastric ischemia‑reperfusion injury in rats. Mol Med Rep 2014; 11:1057-62. [PMID: 25354809 DOI: 10.3892/mmr.2014.2816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 08/22/2014] [Indexed: 11/05/2022] Open
Abstract
Excessive activation of the greater splanchnic nerve (GSN) has previously been determined to contribute to the progression of gastric ischemia‑reperfusion (GI‑R) injury. The present study was designed to estimate the protective effects of GABAA receptor (GABA(A)R) overexpression in the lateral hypothalamic area (LHA) against GI‑R injury. The GI‑R injury model was induced in rats by clamping the celiac artery for 30 min and then reperfusing for 1 h. Microinjection of recombinant adenoviral vectors overexpressing GABA(A)R (Ad‑GABA(A)R) or control adenoviral vectors (Ad‑Con) into the LHA was conducted in GI‑R and normal control rats. Significant protective effects were observed on day 2 after Ad‑GABA(A)R treatment in the GI‑R injury rats. Ad‑GABA(A)R treatment reduced plasma norepinephrine levels, plasma angiotensin II levels and peripheral GSN activity, but increased the gastric mucosal blood flow, as compared with Ad‑Con treatment. These results indicate that adenoviral vector‑induced GABA(A)R overexpression in the LHA blunts GSN activity and subsequently alleviates the effects of gastric injury in GI‑R rats.
Collapse
Affiliation(s)
- Lin Gao
- Department of Neurology, The Affiliated Second Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Tao Zhu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, P.R. China
| | - Guilin Xie
- Life Science College of Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Xiangxin Lou
- Department of Bioengineering, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P.R. China
| | - Shibao Li
- Department of Laboratory Medicine, Lianyungang Hospital Affiliated Bengbu Medical College, Lianyungang, Jiangsu 222006, P.R. China
| | - Yan Zhou
- Department of Laboratory Medicine, Lianyungang Hospital Affiliated Bengbu Medical College, Lianyungang, Jiangsu 222006, P.R. China
| | - Zhenxu Deng
- Department of Life Science, Heze University, Heze, Shandong 274500, P.R. China
| | - Dechang Chu
- Department of Life Science, Heze University, Heze, Shandong 274500, P.R. China
| | - Jiyu Lou
- Department of Neurology, The Affiliated Second Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Dongshu Du
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, P.R. China
| |
Collapse
|
7
|
Du DS, Zhu T, Ren ST, Xie GL, Li SB, Chu DC, Liu XT, Liu M, Ma XB, Zhou MH, Zhu DN, Deng ZX, Wang J. γ-Aminobutyric acid-mediated neurotransmission in cerebellar-hypothalamic circuit attenuates gastric mucosal injury induced by ischemia-reperfusion. Neurogastroenterol Motil 2013; 25:313-e249. [PMID: 23279161 DOI: 10.1111/nmo.12062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Excessive greater splanchnic nerve (GSN) activation contributes to the progression of gastric ischemia-reperfusion (GI-R) injury. This study was designed to investigate the protective mechanism of cerebellar fastigial nucleus (FN) stimulation against GI-R injury. METHODS The GI-R injury model was induced in rats by clamping the celiac artery for 30 min, and then reperfusion for 30 min, 1, 3, 6, or 24 h, respectively. KEY RESULTS Microinjection of L-Glu (3, 6, 12 μg) into the FN dose-dependently attenuated GI-R injury and GSN activity. In addition, there was an enhancement of gastric mucosal blood flow in GI-R rats. Pretreatment with the glutamic acid decarboxylase antagonist into the FN, the GABAA receptor antagonist into the lateral hypothalamic area or lesion of superior cerebellar peduncle all reversed the protective effects of the FN stimulation. Furthermore, the FN stimulation reduced the TUNEL-positive gastric mucosal cell and Bax-positive gastric mucosal cell in GI-R rats. CONCLUSIONS & INFERENCES These results indicate that the protective effects of the FN stimulation against GI-R injury may be mediated by attenuation of the excessive GSN activation, gastric mucosal cell apoptosis, and Bax expression in GI-R rats.
Collapse
Affiliation(s)
- D S Du
- Department of Physiology and Pathophysiology, Shanghai Medical College of Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhu SP, Fei SJ, Zhang JF, Zhu JZ, Li Y, Liu ZB, Qiao X, Li TT. Lateral hypothalamic area mediated the protective effects of microinjection of glutamate into interpositus nucleus on gastric ischemia-reperfusion injury in rats. Neurosci Lett 2012; 525:39-43. [DOI: 10.1016/j.neulet.2012.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/06/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
|