1
|
Wulsin AC, Solomon MB, Privitera MD, Danzer SC, Herman JP. Hypothalamic-pituitary-adrenocortical axis dysfunction in epilepsy. Physiol Behav 2016; 166:22-31. [PMID: 27195458 DOI: 10.1016/j.physbeh.2016.05.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 04/04/2016] [Accepted: 05/11/2016] [Indexed: 12/27/2022]
Abstract
Epilepsy is a common neurological disease, affecting 2.4million people in the US. Among the many different forms of the disease, temporal lobe epilepsy (TLE) is one of the most frequent in adults. Recent studies indicate the presence of a hyperactive hypothalamopituitary- adrenocortical (HPA) axis and elevated levels of glucocorticoids in TLE patients. Moreover, in these patients, stress is a commonly reported trigger of seizures, and stress-related psychopathologies, including depression and anxiety, are highly prevalent. Elevated glucocorticoids have been implicated in the development of stress-related psychopathologies. Similarly, excess glucocorticoids have been found to increase neuronal excitability, epileptiform activity and seizure susceptibility. Thus, patients with TLE may generate abnormal stress responses that both facilitate ictal discharges and increase vulnerability for the development of comorbid psychopathologies. Here, we will examine the evidence that the HPA axis is disrupted in TLE, consider potential mechanisms by which this might occur, and discuss the implications of HPA dysfunction for seizuretriggering and psychiatric comorbidities.
Collapse
Affiliation(s)
- Aynara C Wulsin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Neuroscience Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Department of Anesthesia, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States.
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Neuroscience Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Michael D Privitera
- Department of Neurology, Neuroscience Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Steve C Danzer
- Neuroscience Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Department of Anesthesia, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, College of Medicine, Cincinnati, OH, United States; Neuroscience Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
2
|
Tóth K, Maglóczky Z. The vulnerability of calretinin-containing hippocampal interneurons to temporal lobe epilepsy. Front Neuroanat 2014; 8:100. [PMID: 25324731 PMCID: PMC4179514 DOI: 10.3389/fnana.2014.00100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/04/2014] [Indexed: 01/21/2023] Open
Abstract
This review focuses on the vulnerability of a special interneuron type—the calretinin (CR)-containing interneurons—in temporal lobe epilepsy (TLE). CR is a calcium-binding protein expressed mainly by GABAergic interneurons in the hippocampus. Despite their morphological heterogeneity, CR-containing interneurons form a distinct subpopulation of inhibitory cells, innervating other interneurons in rodents and to some extent principal cells in the human. Their dendrites are strongly connected by zona adherentiae and presumably by gap junctions both in rats and humans. CR-containing interneurons are suggested to play a key role in the hippocampal inhibitory network, since they can effectively synchronize dendritic inhibitory interneurons. The sensitivity of CR-expressing interneurons to epilepsy was discussed in several reports, both in animal models and in humans. In the sclerotic hippocampus the density of CR-immunopositive cells is decreased significantly. In the non-sclerotic hippocampus, the CR-containing interneurons are preserved, but their dendritic tree is varicose, segmented, and zona-adherentia-type contacts can be less frequently observed among dendrites. Therefore, the dendritic inhibition of pyramidal cells may be less effective in TLE. This can be partially explained by the impairment of the CR-containing interneuron ensemble in the epileptic hippocampus, which may result in an asynchronous and thus less effective dendritic inhibition of the principal cells. This phenomenon, together with the sprouting of excitatory pathway axons and enhanced innervation of principal cells, may be involved in seizure generation. Preventing the loss of CR-positive cells and preserving the integrity of CR-positive dendrite gap junctions may have antiepileptic effects, maintaining proper inhibitory function and helping to protect principal cells in epilepsy.
Collapse
Affiliation(s)
- Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Hungary ; Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Zsófia Maglóczky
- Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| |
Collapse
|
3
|
Sawyer NT, Papale LA, Eliason J, Neigh GN, Escayg A. Scn8a voltage-gated sodium channel mutation alters seizure and anxiety responses to acute stress. Psychoneuroendocrinology 2014; 39:225-236. [PMID: 24138934 PMCID: PMC3989103 DOI: 10.1016/j.psyneuen.2013.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 12/30/2022]
Abstract
Stress is known to trigger seizures in patients with epilepsy, highlighting the physiological stress response as a possible therapeutic target for epilepsy treatment. Nevertheless, little is currently known about how a genetic predisposition to epilepsy interacts with the stress response to influence seizure outcome. To address this question, we examined the effect of acute stress on seizure outcome in mice with mutations in the voltage-gated sodium channel (VGSC) gene Scn8a. Scn8a mutants display spontaneous spike-wave discharges (SWDs) characteristic of absence epilepsy. We saw that the baseline frequency of SWDs in Scn8a mutants correlates closely with the diurnal activity of the hypothalamic-pituitary-adrenal (HPA) axis, with a peak in seizure activity occurring at around the same time as the peak in corticosterone (1700-1900h). A 20-min acute restraint stress administered in the morning increases the frequency of spontaneous SWDs immediately following the stressor. Seizure frequency then returns to baseline levels within 3h after stressor exposure, but the subsequent evening peak in seizure frequency is delayed and broadened, changes that persist into the next evening and are accompanied by long-lasting changes in HPA axis activity. Scn8a mutants also show increased anxiety-like behavior in mildly stressful situations. A 20-min acute restraint stress can also increase the severity and duration of chemically induced seizures in Scn8a mutants, changes that differ from wild-type littermates. Overall, our data show that a voltage-gated sodium channel mutation can alter the behavioral response to stress and can interact with the stress response to alter seizure outcome.
Collapse
Affiliation(s)
- Nikki T Sawyer
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Ligia A Papale
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jessica Eliason
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Gretchen N Neigh
- Department of Physiology and Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, USA.
| |
Collapse
|