1
|
Shi X, Zhang Q, Li J, Liu X, Zhang Y, Huang M, Fang W, Xu J, Yuan T, Xiao L, Tang YQ, Wang XD, Luo J, Yang W. Disrupting phosphorylation of Tyr-1070 at GluN2B selectively produces resilience to depression-like behaviors. Cell Rep 2021; 36:109612. [PMID: 34433031 DOI: 10.1016/j.celrep.2021.109612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/12/2021] [Accepted: 08/05/2021] [Indexed: 01/30/2023] Open
Abstract
Drugs targeting N-methyl-D-aspartate receptors (NMDARs) have been approved to treat major depressive disorder (MDD); however, the presence of undesirable psychotomimetic and cognitive side effects may limit their utility. In this study, we show that the phosphorylation levels of the GluN2B subunit at tyrosine (Y) 1070 increase in mice after both acute and chronic restraint stress (CRS) exposure. Preventing GluN2B-Y1070 phosphorylation via Y1070F mutation knockin produces effects similar to those of antidepressants but does not affect cognitive or anxiety-related behaviors in subject mice. Mechanistically, the Y1070F mutation selectively reduces non-synaptic NMDAR currents and increases the number of excitatory synapses in the layer 5 pyramidal neurons of medial prefrontal cortex (mPFC) but not in the hippocampus. Altogether, our study identifies phosphorylation levels of GluN2B-Y1070 in the mPFC as a dynamic, master switch guarding depressive behaviors, suggesting that disrupting the Y1070 phosphorylation of GluN2B subunit has the potential for developing new antidepressants.
Collapse
Affiliation(s)
- Xiaofang Shi
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, P.R. China
| | - Qi Zhang
- Department of Biophysics, Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Jie Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, P.R. China
| | - Xingyu Liu
- Department of Biophysics, Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Yi Zhang
- Department of Biophysics, Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Minhua Huang
- Department of Biophysics, Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China
| | - Weiqing Fang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, P.R. China
| | - Junyu Xu
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, P.R. China
| | - Tifei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Xiao
- Institute for Brain Research and Rehabilitation, South China Normal University, Key Laboratory of Brain Cognition and Education Sciences, Ministry of Education, 510631 Guangzhou, China
| | - Yi-Quan Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiao-Dong Wang
- Department of Neurobiology and Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Jianhong Luo
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, P.R. China.
| | - Wei Yang
- Department of Biophysics, Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P.R. China.
| |
Collapse
|
2
|
Effect of Histone Acetylation on N-Methyl-D-Aspartate 2B Receptor Subunits and Interleukin-1 Receptors in Association with Nociception-Related Somatosensory Cortex Dysfunction in a Mouse Model of Sepsis. Shock 2018; 45:660-7. [PMID: 26682951 DOI: 10.1097/shk.0000000000000547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Whole-body inflammation (i.e., sepsis) often results in brain-related sensory dysfunction. We previously reported that interleukin (IL)-1 resulted in synaptic dysfunction of septic encephalopathy, but the underlying molecular mechanisms remain unknown, as do effective treatments. Using mice, we examined immunohistochemistry, co-immunoprecipitation, enzyme-linked immunosorbent assay, and behavior analyses, and investigated the role of the N-methyl-D-aspartate 2B subunit (NR2B) of NMDA receptor, IL-1 receptor, and histone acetylation in the pathophysiology underlying sensory dysfunction induced by lipopolysaccharide (LPS). Mice groups of sham-operated, LPS, LPS with an NR2B antagonist, or LPS with resveratrol (a histone acetylation activator) were analyzed. We found that LPS increased NR2B and interleukin-1 receptor (IL-1R) immunoreactivity. The expression of Iba1, a marker for microglia and/or macrophages, increased more significantly in the brain than in the spinal cord, implicating NR2B and IL-1R in brain inflammation. Immunoprecipitation with NR2B and IL-1R revealed related antibodies. Blood levels of IL-1β (i.e., the IL-1R ligand) increased, though not significantly, suggesting that inflammation peaked at 20 h. Behavioral assessments of central (CNS) and peripheral sensory (PNS) function indicated that LPS delayed CNS but not PNS escape latency. Finally, NR2B antagonist or resveratrol in the lateral ventricle antagonized the effects of LPS in the brain and improved animal survival. In summary, histone acetylation may control expression of NR2B and IL-1R, alleviating inflammation-induced sensory neuronal dysfunction caused by LPS.
Collapse
|
3
|
Striatal-enriched protein tyrosine phosphatase modulates nociception: evidence from genetic deletion and pharmacological inhibition. Pain 2016; 157:377-386. [PMID: 26270590 DOI: 10.1097/j.pain.0000000000000329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The information from nociceptors is processed in the dorsal horn of the spinal cord by complex circuits involving excitatory and inhibitory interneurons. It is well documented that GluN2B and ERK1/2 phosphorylation contributes to central sensitization. Striatal-enriched protein tyrosine phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting internalization of GluN2B and inactivation of ERK1/2. The activity of STEP was modulated by genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, TC-2153) approaches. STEP(61) protein levels in the lumbar spinal cord were determined in male and female mice of different ages. Inflammatory pain was induced by complete Freund's adjuvant injection. Behavioral tests, immunoblotting, and electrophysiology were used to analyze the effect of STEP on nociception. Our results show that both genetic deletion and pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, which were accompanied by increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Striatal-enriched protein tyrosine phosphatase heterozygous and knockout mice presented a similar phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal field potentials. Interestingly, we found that STEP(61) protein levels in the lumbar spinal cord inversely correlated with thermal hyperalgesia associated with age and female gender in mice. Consistently, STEP knockout mice failed to show age-related thermal hyperalgesia, although gender-related differences were preserved. Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-mediated STEP(61) inactivation and increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Collectively, the present results underscore an important role of spinal STEP activity in the modulation of nociception.
Collapse
|
4
|
Liu F, Ma J, Liu P, Chu Z, Lei G, Jia X, Wang J, Dang Y. Hint1 gene deficiency enhances the supraspinal nociceptive sensitivity in mice. Brain Behav 2016; 6:e00496. [PMID: 27547499 PMCID: PMC4885746 DOI: 10.1002/brb3.496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/07/2016] [Accepted: 04/16/2016] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Previous studies have indicated a possible role of histidine triad nucleotide-binding protein 1 (HINT1) on sustaining the regulatory crosstalk of N-methyl-D-aspartate acid glutamate receptors (NMDARs) and G-protein-coupled receptors (GPCRs) such as the μ-opioid receptor (MOR). Both receptors are present in the midbrain periaqueductal gray neurons, an area that plays a central role in the supraspinal antinociceptive process. METHODS In the present study, a battery of pain-related behavioral experiments was applied to Hint1 knockout, heterozygous and wild-type mice. Both the male and female mice were investigated to assess the differences between genders. RESULTS Hint1-/- mice presented significant shorter latency at 50°C in both male and female in hot plate test while no significant difference was found in tail filck test. In Von Frey hairs test Hint1-/- mice were more sensitive than Hint1+/+ mice, presenting a lower withdrawal threshold and enhanced relative frequency of paw withdrawal. The average flinches and licking time of Hint1-/- mice were more than that of Hint1+/+ mice in formalin test. CONCLUSION The absence of Hint1 gene-enhanced supraspinal nociceptive sensitivity in mice, including thermal, mechanical and inflammatory hyperalgesia. Meanwhile, there was no certain evidence indicating the haploinsufficiency and gender differences of Hint1 gene in pain-related behaviors.
Collapse
Affiliation(s)
- Fei Liu
- College of Medicine & ForensicsXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
- Affiliated Stomatology Hospital of Xi'an Jiaotong University Health Science CenterXi'an710004ShaanxiChina
| | - Jing Ma
- Affiliated Stomatology Hospital of Xi'an Jiaotong University Health Science CenterXi'an710004ShaanxiChina
| | - Peng Liu
- College of Medicine & ForensicsXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
| | - Zheng Chu
- College of Medicine & ForensicsXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
| | - Gang Lei
- College of Medicine & ForensicsXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
| | - Xiao‐di Jia
- College of Medicine & ForensicsXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
- Key Laboratory of the Health Ministry for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
- Key Laboratory of Forensic Medicine of Shaanxi ProvinceXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
| | - Jia‐bei Wang
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMaryland21201
| | - Yong‐hui Dang
- College of Medicine & ForensicsXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
- Key Laboratory of the Health Ministry for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
- Key Laboratory of Forensic Medicine of Shaanxi ProvinceXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
| |
Collapse
|