1
|
Sasaguri K, Yamada K, Yamamoto T. Uncovering the neural circuitry involved in the stress-attenuation effects of chewing. JAPANESE DENTAL SCIENCE REVIEW 2018; 54:118-126. [PMID: 30128059 PMCID: PMC6094491 DOI: 10.1016/j.jdsr.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/08/2017] [Accepted: 03/10/2018] [Indexed: 02/02/2023] Open
Abstract
Previous animal studies have indicated that coupling restraint stress load with activation of the masticatory organs (chewing) causes a reduction in the systemic and central nervous system stress response. However, the brain mechanism underlying this effect is unknown. Therefore, in this review, we summarize the literature regarding brain regions involved in the attenuating effects of chewing and the systemic stress response attenuation effects induced by those brain regions. In addition, we also focusing on the amygdala, as the emotional control center, and the hypothalamic-pituitary-adrenal axis, as one of the outputs of the systemic response. In particular, we will report on one of the chewing-related stress attenuation mechanisms within the brain brought about by the activation of the inhibition pathway accompanying the activation of the amygdala's GABAergic function.
Collapse
Affiliation(s)
- Kenichi Sasaguri
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Kentaro Yamada
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Brain Functions and Neuroscience Division, Department of Oral Science, Kanagawa Dental University Graduate School, Inaoka-cho 82, Yokosuka, Kanagawa 238-8580, Japan
| | - Toshiharu Yamamoto
- Brain Functions and Neuroscience Division, Department of Oral Science, Kanagawa Dental University Graduate School, Inaoka-cho 82, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
2
|
Kubo KY, Kotachi M, Suzuki A, Iinuma M, Azuma K. Chewing during prenatal stress prevents prenatal stress-induced suppression of neurogenesis, anxiety-like behavior and learning deficits in mouse offspring. Int J Med Sci 2018; 15:849-858. [PMID: 30008596 PMCID: PMC6036092 DOI: 10.7150/ijms.25281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 01/08/2023] Open
Abstract
Prenatal stress (PS) induces learning deficits and anxiety-like behavior in mouse pups by increasing corticosterone levels in the dam. We examined the effects of maternal chewing during PS on arginine vasopressin (AVP) mRNA expression in the dams and on neurogenesis, brain-derived neurotrophic factor (BDNF) mRNA expression, learning deficits and anxiety-like behavior in the offspring. Mice were divided into control, stress and stress/chewing groups. Pregnant mice were exposed to restraint stress beginning on day 12 of pregnancy and continuing until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint stress. PS significantly increased AVP mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus in the dams. PS also impaired learning ability, suppressed neurogenesis and BDNF mRNA expression in the hippocampus, and induced anxiety-like behavior in the offspring. Chewing during PS prevented the PS-induced increase in AVP mRNA expression of the PVN in the dams. Chewing during PS significantly attenuated the PS-induced learning deficits, anxiety-like behavior, and suppression of neurogenesis and BDNF mRNA expression in the hippocampus of the offspring. Chewing during PS prevented the increase in plasma corticosterone in the dam by inhibiting the hypothalamic-pituitary-adrenal axis activity, and attenuated the attenuated the PS-induced suppression of neurogenesis and BDNF expression in the hippocampus of the pups, thereby ameliorating the PS-induced learning deficits and anxiety-like behavior. Chewing during PS is an effective stress-coping method for the dam to prevent PS-induced deficits in learning ability and anxiety-like behavior in the offspring.
Collapse
Affiliation(s)
- Kin-ya Kubo
- Graduate School of Human Life Science, Nagoya Women's University, 3-40 Shioji-cho, Mizuho-ku, Nagoya, Aichi, 467-8610, Japan
| | - Mika Kotachi
- Departments of 2 Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Ayumi Suzuki
- Departments of 2 Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Mitsuo Iinuma
- Departments of 2 Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu, 807-8555, Japan
| |
Collapse
|
3
|
Chewing ameliorates the effects of restraint stress on pERK-immunoreactive neurons in the rat insular cortex. Neurosci Lett 2018. [DOI: 10.1016/j.neulet.2018.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Association between Mastication, the Hippocampus, and the HPA Axis: A Comprehensive Review. Int J Mol Sci 2017; 18:ijms18081687. [PMID: 28771175 PMCID: PMC5578077 DOI: 10.3390/ijms18081687] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/29/2022] Open
Abstract
Mastication is mainly involved in food intake and nutrient digestion with the aid of teeth. Mastication is also important for preserving and promoting general health, including hippocampus-dependent cognition. Both animal and human studies indicate that mastication influences hippocampal functions through the end product of the hypothalamic-pituitary-adrenal (HPA) axis, glucocorticoid (GC). Epidemiologic studies suggest that masticatory dysfunction in aged individuals, such as that resulting from tooth loss and periodontitis, acting as a source of chronic stress, activates the HPA axis, leading to increases in circulating GCs and eventually inducing various physical and psychological diseases, such as cognitive impairment, cardiovascular disorders, and osteoporosis. Recent studies demonstrated that masticatory stimulation or chewing during stressful conditions suppresses the hyperactivity of the HPA axis via GCs and GC receptors within the hippocampus, and ameliorates chronic stress-induced hippocampus-dependent cognitive deficits. Here, we provide a comprehensive overview of current research regarding the association between mastication, the hippocampus, and HPA axis activity. We also discuss several potential molecular mechanisms involved in the interactions between mastication, hippocampal function, and HPA axis activity.
Collapse
|
5
|
Suzuki A, Iinuma M, Hayashi S, Sato Y, Azuma K, Kubo KY. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring. Brain Res 2016; 1651:36-43. [PMID: 27613358 DOI: 10.1016/j.brainres.2016.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/12/2016] [Accepted: 09/05/2016] [Indexed: 01/24/2023]
Abstract
Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring.
Collapse
Affiliation(s)
- Ayumi Suzuki
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Mitsuo Iinuma
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Sakurako Hayashi
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Yuichi Sato
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Science, Kitasato 1-15-1, Minamiku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kin-Ya Kubo
- Seijoh University Graduate School of Health Care Studies, 2-172, Fukinodai, Tokai, Aichi 476-8588, Japan.
| |
Collapse
|
6
|
Yamada K, Narimatsu Y, Ono Y, Sasaguri KI, Onozuka M, Kawata T, Yamamoto T. Chewing suppresses the stress-induced increase in the number of pERK-immunoreactive cells in the periaqueductal grey. Neurosci Lett 2015; 599:43-8. [PMID: 25980997 DOI: 10.1016/j.neulet.2015.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/04/2015] [Accepted: 05/12/2015] [Indexed: 11/18/2022]
Abstract
We investigated the effects of chewing under immobilization stress on the periaqueductal gray (PAG) matter using phosphorylated extracellular signal-regulated kinase (pERK) as a marker of responding cells. Immobilization stress increased pERK-immunoreactive cells in the PAG. Among four subdivisions of the PAG, the increase of immunoreactive cells was remarkable in the dorsolateral and ventrolateral subdivisions. However, increase of pERK-immunoreactive cells by the immobilization stress was not so evident in the dorsomedial and lateral subdivisions. The chewing under immobilization stress prevented the stress-induced increase of pERK-immunoreactive cells in the dorsolateral and ventrolateral subdivisions with statistical significances (p<0.05). Again, chewing effects on pERK-immunoreactive cells were not visible in the dorsomedial and lateral subdivisions. These results suggest that the chewing alleviates the PAG (dorsolateral and ventrolateral subdivisions) responses to stress.
Collapse
Affiliation(s)
- Kentaro Yamada
- Department of Oral Science, Division of Brain Functions and Neuroscience, Kanagawa Dental University, Yokosuka, Japan
| | - Yuri Narimatsu
- Department of Oral Science, Division of Orthodontics, Kanagawa Dental University, Yokosuka, Japan
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Japan
| | - Ken-Ichi Sasaguri
- Department of Oral Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Minoru Onozuka
- Nittai Jyusei Medical College for Judo Therapeutics, Tokyo, Japan
| | - Toshitsugu Kawata
- Department of Oral Science, Division of Orthodontics, Kanagawa Dental University, Yokosuka, Japan
| | - Toshiharu Yamamoto
- Department of Oral Science, Division of Brain Functions and Neuroscience, Kanagawa Dental University, Yokosuka, Japan.
| |
Collapse
|
7
|
Onishi M, Iinuma M, Tamura Y, Kubo KY. Learning deficits and suppression of the cell proliferation in the hippocampal dentate gyrus of offspring are attenuated by maternal chewing during prenatal stress. Neurosci Lett 2014; 560:77-80. [DOI: 10.1016/j.neulet.2013.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/13/2013] [Accepted: 12/08/2013] [Indexed: 11/27/2022]
|