1
|
Wu H, Song Z, Chen Q, Yan R, Zhao H, Li H. Disrupting reconsolidation by systemic inhibition of Thioredoxin-1 attenuates cocaine and morphine relapse. Biomed Pharmacother 2025; 186:118037. [PMID: 40199134 DOI: 10.1016/j.biopha.2025.118037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025] Open
Abstract
The enduring nature of drug-associated memories is an essential factor contributing to the relapse. Drug-related cues can activate drug memories, making them enter reconsolidation, during which interventions can effectively disrupt these memories. Interventions targeting memory reconsolidation present a promising therapeutic strategy for addressing substance use disorders (SUDs). Oxidative stress can disrupt neural function and impair memory. Thioredoxin-1 (Trx-1) effectively alleviates oxidative stress and reduces inflammation levels. However, few studies have connected Trx-1 to drug memory or explored its specific role in reconsolidation. This research employed the conditioned place preference (CPP) model to investigate the effects of Trx-1 inhibitors on the reconsolidation of morphine- and cocaine-related memories. Results show that immediate administration of PX-12, a Trx-1 inhibitor, after retrieval significantly attenuated the reinstatement of cocaine and morphine CPP induced by both cues and the drug itself, with the effect lasting for at least 14 days. In contrast, the inhibition of Trx-1, either 6 hours following retrieval or in the absence of retrieval, does not influence drug-seeking behaviors associated with cocaine or morphine. Furthermore, Trx-1 inhibitor itself did not produce any preferences. In summary, our results indicate that Trx-1 activity is crucial for cocaine- and morphine-related memories, and that the Trx-1 inhibitor may serve as a potential treatment for drug abuse.
Collapse
Affiliation(s)
- Hao Wu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Science, Beijing, China
| | - Zhihao Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Skull Base Surgery and Neurooncology in Hunan Province, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qijun Chen
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China
| | - Ruyu Yan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Skull Base Surgery and Neurooncology in Hunan Province, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haiting Zhao
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Skull Base Surgery and Neurooncology in Hunan Province, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Xu X, Zhang L, He Y, Qi C, Li F. Progress in Research on the Role of the Thioredoxin System in Chemical Nerve Injury. TOXICS 2024; 12:510. [PMID: 39058162 PMCID: PMC11280602 DOI: 10.3390/toxics12070510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
(1) Background: Various factors, such as oxidative stress, mitochondrial dysfunction, tumors, inflammation, trauma, immune disorders, and neuronal toxicity, can cause nerve damage. Chemical nerve injury, which results from exposure to toxic chemicals, has garnered increasing research attention. The thioredoxin (Trx) system, comprising Trx, Trx reductase, nicotinamide adenine dinucleotide phosphate, and Trx-interacting protein (TXNIP; endogenous Trx inhibitor), helps maintain redox homeostasis in the central nervous system. The dysregulation of this system can cause dementia, cognitive impairment, nerve conduction disorders, movement disorders, and other neurological disorders. Thus, maintaining Trx system homeostasis is crucial for preventing or treating nerve damage. (2) Objective: In this review study, we explored factors influencing the homeostasis of the Trx system and the involvement of its homeostatic imbalance in chemical nerve injury. In addition, we investigated the therapeutic potential of the Trx system-targeting active substances against chemical nerve injury. (3) Conclusions: Chemicals such as morphine, metals, and methylglyoxal interfere with the activity of TXNIP, Trx, and Trx reductase, disrupting Trx system homeostasis by affecting the phosphatidylinositol-3-kinase/protein kinase B, extracellular signal-regulated kinase, and apoptotic signaling-regulated kinase 1/p38 mitogen-activated protein kinase pathways, thereby leading to neurological disorders. Active substances such as resveratrol and lysergic acid sulfide mitigate the symptoms of chemical nerve injury by regulating the Ras/Raf1/extracellular signal-regulated kinase pathway and the miR-146a-5p/TXNIP axis. This study may guide the development of Trx-targeting modulators for treating neurological disorders and chemical nerve injuries.
Collapse
Affiliation(s)
- Xinwei Xu
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| | - Lan Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| | - Yuyun He
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| | - Cong Qi
- Department of Pharmacy, Jurong People’s Hospital, Jurong 212400, China;
| | - Fang Li
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (X.X.); (L.Z.); (Y.H.)
| |
Collapse
|
3
|
Reymond S, Vujić T, Schvartz D, Sanchez JC. Morphine-induced modulation of Nrf2-antioxidant response element signaling pathway in primary human brain microvascular endothelial cells. Sci Rep 2022; 12:4588. [PMID: 35301408 PMCID: PMC8931063 DOI: 10.1038/s41598-022-08712-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Morphine is one of the most potent opioid analgesic used for pain treatment. Morphine action in the central nervous system requires crossing the blood-brain barrier. Due to the controversial relationship between morphine and oxidative stress, the potential pro- or antioxidant effects of morphine in the blood-brain barrier is important to be understood, as oxidative stress could cause its disruption and predispose to neurodegenerative diseases. However, investigation is scarce in human brain endothelial cells. Therefore, the present study evaluated the impact of morphine exposure at three different concentrations (1, 10 and 100 µM) for 24 h and 48 h on primary human brain microvascular endothelial cells. A quantitative data-independent acquisition mass spectrometry strategy was used to analyze proteome modulations. Almost 3000 proteins were quantified of which 217 were reported to be significantly regulated in at least one condition versus untreated control. Pathway enrichment analysis unveiled dysregulation of the Nrf2 pathway involved in oxidative stress response. Seahorse assay underlined mitochondria dysfunctions, which were supported by significant expression modulations of relevant mitochondrial proteins. In conclusion, our study revealed the dysregulation of the Nrf2 pathway and mitochondria dysfunctions after morphine exposure, highlighting a potential redox imbalance in human brain endothelial cells.
Collapse
Affiliation(s)
- Sandrine Reymond
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Center for Applied Human Toxicology, Geneva, Switzerland
| | - Tatjana Vujić
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Center for Applied Human Toxicology, Geneva, Switzerland
| | - Domitille Schvartz
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Swiss Center for Applied Human Toxicology, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Swiss Center for Applied Human Toxicology, Geneva, Switzerland.
| |
Collapse
|
4
|
Zeng XS, Geng WS, Wang ZQ, Jia JJ. Morphine Addiction and Oxidative Stress: The Potential Effects of Thioredoxin-1. Front Pharmacol 2020; 11:82. [PMID: 32153403 DOI: 10.3389/fphar.2020.00082if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/27/2020] [Indexed: 11/16/2024] Open
Abstract
Long-term administration of morphine for the management of chronic pain will result in tolerance to its analgesic effect and could even cause drug dependence. Numerous studies have demonstrated significant redox alteration in morphine dependence and addiction. Thioredoxin-1 (Trx-1) play important roles in controlling the cellular redox balance. In recent years, several recent studies have demonstrated that Trx-1 may be a promising novel therapeutic target for morphine addiction. In this article, we firstly review the redox alteration in morphine addiction. We also summarize the expression and the protective roles of Trx-1 in morphine dependence. We further highlight the protection of geranylgeranylacetone (GGA), a noncytotoxic pharmacological inducer of Trx-1, in morphine-induced conditioned place preference. In conclusion, Trx-1 may be very promising for clinical therapy of morphine addiction in the future.
Collapse
Affiliation(s)
- Xian-Si Zeng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Wen-Shuo Geng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Zhan-Qi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Jin-Jing Jia
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
5
|
Zeng XS, Geng WS, Wang ZQ, Jia JJ. Morphine Addiction and Oxidative Stress: The Potential Effects of Thioredoxin-1. Front Pharmacol 2020; 11:82. [PMID: 32153403 PMCID: PMC7047156 DOI: 10.3389/fphar.2020.00082] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Long-term administration of morphine for the management of chronic pain will result in tolerance to its analgesic effect and could even cause drug dependence. Numerous studies have demonstrated significant redox alteration in morphine dependence and addiction. Thioredoxin-1 (Trx-1) play important roles in controlling the cellular redox balance. In recent years, several recent studies have demonstrated that Trx-1 may be a promising novel therapeutic target for morphine addiction. In this article, we firstly review the redox alteration in morphine addiction. We also summarize the expression and the protective roles of Trx-1 in morphine dependence. We further highlight the protection of geranylgeranylacetone (GGA), a noncytotoxic pharmacological inducer of Trx-1, in morphine-induced conditioned place preference. In conclusion, Trx-1 may be very promising for clinical therapy of morphine addiction in the future.
Collapse
Affiliation(s)
- Xian-Si Zeng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Wen-Shuo Geng
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Zhan-Qi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Jin-Jing Jia
- Key Laboratory of Tea Plant Biology of Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
6
|
Fan Y, Chen Y, Zhang S, Huang M, Wang S, Li Y, Bai J. Morphine reverses the effects of 1-methyl-4-phenylpyridinium in PC12 cells through activating PI3K/Akt. Int J Neurosci 2018; 129:30-35. [PMID: 29936883 DOI: 10.1080/00207454.2018.1492575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM OF THE STUDY Parkinson's disease (PD) is a neurodegenerative disorder. It is caused by the degeneration of dopaminergic neurons and the dopamine (DA) deletion in the substantia nigra pars compacta (SNpc). Morphine elevates the level of dopamine in the mesolimbic dopamine system and plays a role in alleviating PD symptoms. However, the molecular mechanism is still unclear. The aim of the study is to investigate the mechanism on morphine alleviating PD symptoms. MATERIALS AND METHODS The viability of PC12 cells was measured by using MTT assay. The expressions of tyrosine hydroxylase (TH), thioredoxin-1 (Trx-1), CyclinD1 and Cyclin-dependent kinase5 (Cdk5) were detected by Western Blot. RESULTS In present study, we found that morphine increased the cell viability in PC12 cells. 1-methyl-4-phenylpyridi-nium (MPP+) reduced the cell viability and TH expression, which were reversed by morphine. MPP+ decreased the expressions of Trx-1, CyclinD1, Cdk5, which were restored by morphine. Moreover, the role of morphine in restoring the expressions of Trx-1, CyclinD1 and Cdk5 decreased by MPP+ was abolished by LY294002, phosphatidylinositol-3-kinase (PI3K)/Akt inhibitor. CONCLUSIONS These results suggest that morphine reverses effects induced by MPP þ through activating PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yuan Fan
- a Faculty of Environmental Science and Engineering , Kunming University of Science and Technology , Kunming , China.,b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Yan Chen
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Se Zhang
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Mengbing Huang
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Shengdong Wang
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Ye Li
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Jie Bai
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| |
Collapse
|
7
|
Guo N, Zhang X, Huang M, Li X, Li Y, Zhou X, Bai J. Geranylgeranylacetone blocks the reinstatement of morphine-conditioned place preference. Neuropharmacology 2018; 143:63-70. [PMID: 30240785 DOI: 10.1016/j.neuropharm.2018.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/24/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022]
Abstract
Morphine is widely used for clinical pain management and induces the dependence. Addiction to morphine is a major public health issue. Geranylgeranylacetone (GGA) is widely used in clinic for treating ulcer. GGA induces expression of thioredoxin-1 (Trx-1) extensively. Trx-1 is a redox regulating protein and plays protecting roles in nervous system. GGA prevents mice against morphine-induced hyperlocomotion, rewarding effect, and withdrawal syndrome. However, whether GGA blocks morphine-conditioned place preference (CPP) reinstatement is still unknown. In the present study, we found that GGA administration blocked the reinstatement of morphine-CPP. The expressions of Trx-1, N-methyl d-aspartate receptor 2B subunit (NR2B), phosphorylated Ca2+/calmodulin-dependent protein kinase II (p-CaMKII), phosphorylated extracellular signaling regulated kinases (p-ERK), and phosphorylated cAMP-response element binding protein (p-CREB) were induced in nucleus accumbens (NAc) and hippocampus by morphine or GGA, whereas these proteins were not changed by morphine in GGA-treated mice. Our results indicate that GGA may prevent the reinstatement of morphine-CPP through strengthening the expression of Trx-1 and regulating NR2B/ERK pathway. Thus, we suggest that GGA may be a promising therapeutic candidate for morphine-induced relapse.
Collapse
Affiliation(s)
- Ningning Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xianwen Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Mengbing Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiang Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ye Li
- Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaoshuang Zhou
- Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
8
|
Li X, Huang M, Yang L, Guo N, Yang X, Zhang Z, Bai M, Ge L, Zhou X, Li Y, Bai J. Overexpression of Thioredoxin-1 Blocks Morphine-Induced Conditioned Place Preference Through Regulating the Interaction of γ-Aminobutyric Acid and Dopamine Systems. Front Neurol 2018; 9:309. [PMID: 29770121 PMCID: PMC5941988 DOI: 10.3389/fneur.2018.00309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/19/2018] [Indexed: 01/03/2023] Open
Abstract
Morphine is one kind of opioid, which is currently the most effective widely utilized pain relieving pharmaceutical. Long-term administration of morphine leads to dependence and addiction. Thioredoxin-1 (Trx-1) is an important redox regulating protein and works as a neurotrophic cofactor. Our previous study showed that geranylgeranylaceton, an inducer of Trx-1 protected mice from rewarding effects induced by morphine. However, whether overexpression of Trx-1 can block morphine-induced conditioned place preference (CPP) in mice is still unknown. In this study, we first examined whether overexpression of Trx-1 affects the CPP after morphine training and further examined the dopamine (DA) and γ-aminobutyric acid (GABA) systems involved in rewarding effects. Our results showed that morphine-induced CPP was blocked in Trx-1 overexpression transgenic (TG) mice. Trx-1 expression was induced by morphine in the ventral tegmental area (VTA) and nucleus accumbens (NAc) in wild-type (WT) mice, which was not induced in Trx-1 TG mice. The DA level and expressions of tyrosine hydroxylase (TH) and D1 were induced by morphine in WT mice, which were not induced in Trx-1 TG mice. The GABA level and expression of GABABR were decreased by morphine, which were restored in Trx-1 TG mice. Therefore, Trx-1 may play a role in blocking CPP induced by morphine through regulating the expressions of D1, TH, and GABABR in the VTA and NAc.
Collapse
Affiliation(s)
- Xiang Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Mengbing Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Lihua Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Ningning Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Xiaoyan Yang
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Zhimin Zhang
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Ming Bai
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Lu Ge
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Xiaoshuang Zhou
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Ye Li
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
9
|
Jia JJ, Zeng XS, Zhou XS, Li Y, Bai J. The induction of thioredoxin-1 by epinephrine withdraws stress via interaction with β-arrestin-1. Cell Cycle 2015; 13:3121-31. [PMID: 25486571 DOI: 10.4161/15384101.2014.949214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Stress regulates a panel of important physiological functions and disease states. Epinephrine is produced under stresses threaten to homeostasis. Thioredoxin-1(Trx-1) is a redox regulating protein which is induced to resist stresses and related with various diseases. Thus, it is important to examine whether Trx-1 is induced by epinephrine and to understand the underlying molecular mechanisms that Trx-1 modulates epinephrine stress. Here, we show that the expression of Trx-1 was induced by epinephrine via β-adrenergic receptor/Cyclic AMP/protein kinase A (PKA) signaling pathway in PC12 cells. The down-regulation of Trx-1 by siRNA aggravated accumulation of γ-H2AX and further decreased expression of p53 by epinephrine. Accordingly, Trx-1 overexpression alleviated accumulation of γ-H2AX and restored the expressions of p53 and C/EBP homologous protein (CHOP) in the cortex, hippocampus and thymus of mice. Moreover, Trx-1 overexpression reduced the malondialdehyde concentration by epinephrine. We further explored the mechanism on p53 and γ-H2AX regulated by Trx-1. We found that overexpression of Trx-1 suppressed β-arrestin-1 expression through interaction with β-arrestin-1. Consequently, the downregulation of β-arrestin-1 suppressed the cell viability and the expressions of γ-H2AX and cyclin D1, and increased p53 expression. Taken together, our data suggest that Trx-1/β-arrestin-1 interaction may represent a novel endogenous mechanism on protecting against stress.
Collapse
Key Words
- ASK1, Apoptosis signal-regulating kinase 1
- Abbreviations:
- CHOP
- CHOP, C/EBP homologous protein
- DNA damage
- GPCR, G protein-coupled receptors
- MAPK, Mitogen-activated protein kinase
- MDA, Malondialdehyde
- MDM2, Murine double minute 2
- PKA, Protein Kinase A
- TBP-2, Thioredoxin binding protein-2
- Thioredoxin-1
- Trx-1, Thioredoxin-1
- Txnip, thioredoxin interacting protein
- chronic epinephrine stress
- p53
- β-arrestin-1
- γ-H2AX, Phosphorylation of histone H2AX
Collapse
Affiliation(s)
- Jin-Jing Jia
- a College of Life Science and Technology ; Kunming University of Science and Technology ; Kunming , China
| | | | | | | | | |
Collapse
|
10
|
García-Carmona JA, Camejo DM, Almela P, Jiménez A, Milanés MV, Sevilla F, Laorden ML. CP-154,526 Modifies CREB Phosphorylation and Thioredoxin-1 Expression in the Dentate Gyrus following Morphine-Induced Conditioned Place Preference. PLoS One 2015; 10:e0136164. [PMID: 26313266 PMCID: PMC4551807 DOI: 10.1371/journal.pone.0136164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/31/2015] [Indexed: 12/31/2022] Open
Abstract
Corticotropin-releasing factor (CRF) acts as neuro-regulator of the behavioral and emotional integration of environmental and endogenous stimuli associated with drug dependence. Thioredoxin-1 (Trx-1) is a functional protein controlling the redox status of several proteins, which is involved in addictive processes. In the present study, we have evaluated the role of CRF1 receptor (CRF1R) in the rewarding properties of morphine by using the conditioned place preference (CPP) paradigm. We also investigate the effects of the CRF1R antagonist, CP-154,526, on the morphine CPP-induced activation of CRF neurons, CREB phosphorylation and Trx expression in paraventricular nucleus (PVN) and dentate gyrus (DG) of the mice brain. CP-154,526 abolished the acquisition of morphine CPP and the increase of CRF/pCREB positive neurons in PVN. Moreover, this CRF1R antagonist prevented morphine-induced CRF-immunoreactive fibers in DG, as well as the increase in pCREB expression in both the PVN and DG. In addition, morphine exposure induced an increase in Trx-1 expression in DG without any alterations in PVN. We also observed that the majority of pCREB positive neurons in DG co-expressed Trx-1, suggesting that Trx-1 could activate CREB in the DG, a brain region involved in memory consolidation. Altogether, these results support the idea that CRF1R antagonist blocked Trx-1 expression and pCREB/Trx-1 co-localization, indicating a critical role of CRF, through CRF1R, in molecular changes involved in morphine associated behaviors.
Collapse
Affiliation(s)
| | - Daymi M. Camejo
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Pilar Almela
- Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
- * E-mail:
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | | | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - María-Luisa Laorden
- Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
11
|
Jia JJ, Zeng XS, Yang LH, Bai J. The epinephrine increases tyrosine hydroxylase expression through upregulating thioredoxin-1 in PC12 cells. Biochimie 2015; 115:52-8. [PMID: 25957836 DOI: 10.1016/j.biochi.2015.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/27/2015] [Indexed: 11/20/2022]
Abstract
Epinephrine is a stress hormone which is sharply increased in response to acute stress and is continuously elevated during persistent stress. Thioredoxin-1 (Trx-1) is a redox regulating protein and is induced under various stresses. Our previous study has shown that epinephrine induces the expression of Trx-1. Tyrosine hydroxylase (TH) is the major rate-limiting enzyme in catecholamine biosynthesis in response to stress. However, how TH is regulated by epinephrine is still unknown. In the present study, we found that epinephrine increased the expression of TH in a dose- and time-dependent manner in PC12 cells, which was inhibited by propranolol (β-adrenergic receptor inhibitor), but not by phenoxybenzamine (α-adrenergic receptor inhibitor). The increase of TH was also inhibited by SQ22536 (adenylyl cyclase inhibitor), H-89(PKA inhibitor) and LY294002 (phosphatidylinositol 3 kinase inhibitor). More importantly, overexpression of Trx-1 significantly enhanced the expression of TH, while Trx-1 siRNA suppressed TH expression induced by epinephrine. These results suggest that Trx-1 is involved in TH expression induced by epinephrine in PC12 cells.
Collapse
Affiliation(s)
- Jin-Jing Jia
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian-Si Zeng
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Li-Hua Yang
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
12
|
Thioredoxin system regulation in the central nervous system: experimental models and clinical evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:590808. [PMID: 24723994 PMCID: PMC3958682 DOI: 10.1155/2014/590808] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 02/07/2023]
Abstract
The reactive oxygen species produced continuously during oxidative metabolism are generated at very high rates in the brain. Therefore, defending against oxidative stress is an essential task within the brain. An important cellular system against oxidative stress is the thioredoxin system (TS). TS is composed of thioredoxin, thioredoxin reductase, and NADPH. This review focuses on the evidence gathered in recent investigations into the central nervous system, specifically the different brain regions in which the TS is expressed. Furthermore, we address the conditions that modulate the thioredoxin system in both, animal models and the postmortem brains of human patients associated with the most common neurodegenerative disorders, in which the thioredoxin system could play an important part.
Collapse
|
13
|
Jia JJ, Zeng XS, Zhou XS, Li Y, Bai J. The induction of thioredoxin-1 by epinephrine withdraws stress via interaction with β-arrestin-1. Cell Cycle 2014; 13:3121-3131. [PMID: 25486571 DOI: 10.4161/15384101.2014.949214if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Stress regulates a panel of important physiological functions and disease states. Epinephrine is produced under stresses threaten to homeostasis. Thioredoxin-1(Trx-1) is a redox regulating protein which is induced to resist stresses and related with various diseases. Thus, it is important to examine whether Trx-1 is induced by epinephrine and to understand the underlying molecular mechanisms that Trx-1 modulates epinephrine stress. Here, we show that the expression of Trx-1 was induced by epinephrine via β-adrenergic receptor/Cyclic AMP/protein kinase A (PKA) signaling pathway in PC12 cells. The down-regulation of Trx-1 by siRNA aggravated accumulation of γ-H2AX and further decreased expression of p53 by epinephrine. Accordingly, Trx-1 overexpression alleviated accumulation of γ-H2AX and restored the expressions of p53 and C/EBP homologous protein (CHOP) in the cortex, hippocampus and thymus of mice. Moreover, Trx-1 overexpression reduced the malondialdehyde concentration by epinephrine. We further explored the mechanism on p53 and γ-H2AX regulated by Trx-1. We found that overexpression of Trx-1 suppressed β-arrestin-1 expression through interaction with β-arrestin-1. Consequently, the downregulation of β-arrestin-1 suppressed the cell viability and the expressions of γ-H2AX and cyclin D1, and increased p53 expression. Taken together, our data suggest that Trx-1/β-arrestin-1 interaction may represent a novel endogenous mechanism on protecting against stress.
Collapse
Key Words
- ASK1, Apoptosis signal-regulating kinase 1
- Abbreviations:
- CHOP
- CHOP, C/EBP homologous protein
- DNA damage
- GPCR, G protein-coupled receptors
- MAPK, Mitogen-activated protein kinase
- MDA, Malondialdehyde
- MDM2, Murine double minute 2
- PKA, Protein Kinase A
- TBP-2, Thioredoxin binding protein-2
- Thioredoxin-1
- Trx-1, Thioredoxin-1
- Txnip, thioredoxin interacting protein
- chronic epinephrine stress
- p53
- β-arrestin-1
- γ-H2AX, Phosphorylation of histone H2AX
Collapse
Affiliation(s)
- Jin-Jing Jia
- a College of Life Science and Technology ; Kunming University of Science and Technology ; Kunming , China
| | | | | | | | | |
Collapse
|
14
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
15
|
Rehni AK, Singh TG. Pharmacological modulation of geranylgeranyltransferase and farnesyltransferase attenuates opioid withdrawal in vivo and in vitro. Neuropharmacology 2013; 71:19-26. [PMID: 23415632 DOI: 10.1016/j.neuropharm.2013.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/15/2013] [Accepted: 01/20/2013] [Indexed: 11/29/2022]
Abstract
Geranylgeranyltransferase and farnesyltransferase I, are noted to mediate a number of signal transduction cascades which are known to be involved in the causation of opioid withdrawal syndrome. GGTI-2133 and FTI-276 are selective modulators of geranylgeranyltransferase and farnesyltransferase subtype 1 respectively. Therefore, the present study investigated the effect of GGTI-2133 and FTI-276 on propagation of morphine dependence and resultant withdrawal signs in vivo, in sub-chronic morphine mouse model, and in vitro, in isolated rat ileum. Morphine was administered twice daily for 5 days following which a single day 6 injection of naloxone (8 mg/kg, i.p.) precipitated opioid withdrawal syndrome in mice. Withdrawal syndrome was quantitatively assessed in terms of withdrawal severity score and the frequency of jumping, rearing, fore paw licking & circling. Naloxone induced contraction in morphine withdrawn isolated rat ileum was employed as an in vitro model of opioid withdrawal syndrome. An isobolographic study design was employed to assess a potential synergistic activity between GGTI-2133 and FTI-276. GGTI-2133 and FTI-276 dose dependently attenuated naloxone induced morphine withdrawal syndrome both in vivo and in vitro. GGTI-2133 was also observed to exert a synergistic interaction with FTI-276. It is concluded that GGTI-2133 and FTI-276 attenuate the propagation of morphine dependence and reduce withdrawal signs possibly by a geranylgeranyl transferase; farnesyltransferase activation pathway linked mechanisms potentially in an interdependent manner.
Collapse
Affiliation(s)
- Ashish K Rehni
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh Patiala National Highway, Rajpura, Patiala 147002 Punjab, India.
| | | |
Collapse
|