1
|
Andrews SV, Kukkle PL, Menon R, Geetha TS, Goyal V, Kandadai RM, Kumar H, Borgohain R, Mukherjee A, Wadia PM, Yadav R, Desai S, Kumar N, Joshi D, Murugan S, Biswas A, Pal PK, Oliver M, Nair S, Kayalvizhi A, Samson PL, Deshmukh M, Bassi A, Sandeep C, Mandloi N, Davis OB, Roberts MA, Leto DE, Henry AG, Di Paolo G, Muthane U, Das SK, Peterson AS, Sandmann T, Gupta R, Ramprasad VL. The Genetic Drivers of Juvenile, Young, and Early-Onset Parkinson's Disease in India. Mov Disord 2024; 39:339-349. [PMID: 38014556 DOI: 10.1002/mds.29676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Recent studies have advanced our understanding of the genetic drivers of Parkinson's disease (PD). Rare variants in more than 20 genes are considered causal for PD, and the latest PD genome-wide association study (GWAS) identified 90 independent risk loci. However, there remains a gap in our understanding of PD genetics outside of the European populations in which the vast majority of these studies were focused. OBJECTIVE The aim was to identify genetic risk factors for PD in a South Asian population. METHODS A total of 674 PD subjects predominantly with age of onset (AoO) ≤50 years (encompassing juvenile, young, or early-onset PD) were recruited from 10 specialty movement disorder centers across India over a 2-year period; 1376 control subjects were selected from the reference population GenomeAsia, Phase 2. We performed various case-only and case-control genetic analyses for PD diagnosis and AoO. RESULTS A genome-wide significant signal for PD diagnosis was identified in the SNCA region, strongly colocalizing with SNCA region signal from European PD GWAS. PD cases with pathogenic mutations in PD genes exhibited, on average, lower PD polygenic risk scores than PD cases lacking any PD gene mutations. Gene burden studies of rare, predicted deleterious variants identified BSN, encoding the presynaptic protein Bassoon that has been previously associated with neurodegenerative disease. CONCLUSIONS This study constitutes the largest genetic investigation of PD in a South Asian population to date. Future work should seek to expand sample numbers in this population to enable improved statistical power to detect PD genes in this understudied group. © 2023 Denali Therapeutics and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shan V Andrews
- Denali Therapeutics, South San Francisco, California, USA
| | - Prashanth L Kukkle
- Manipal Hospital, Bangalore, India
- Parkinson's Disease and Movement Disorders Clinic, Bangalore, India
| | | | | | - Vinay Goyal
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
- Medanta Hospital, New Delhi, India
- Medanta, The Medicity, Gurgaon, India
| | - Rukmini Mridula Kandadai
- Nizams Institute of Medical Sciences (NIMS), Hyderabad, India
- Citi Neuro Centre, Hyderabad, India
| | | | - Rupam Borgohain
- Nizams Institute of Medical Sciences (NIMS), Hyderabad, India
- Citi Neuro Centre, Hyderabad, India
| | - Adreesh Mukherjee
- Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | | | - Ravi Yadav
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Soaham Desai
- Department of Neurology, Shree Krishna Hospital and Pramukhaswami Medical College, Bhaikaka University, Anand, India
| | - Niraj Kumar
- All India Institute of Medical Sciences, Rishikesh, India
- All India Institute of Medical Sciences, Bibinagar (Hyderabad Metropolitan Region), Bibinagar, India
| | - Deepika Joshi
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Atanu Biswas
- Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Pramod K Pal
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | | | | | | | | | | | | | | | - Oliver B Davis
- Denali Therapeutics, South San Francisco, California, USA
| | | | - Dara E Leto
- Denali Therapeutics, South San Francisco, California, USA
| | | | | | - Uday Muthane
- Parkinson and Ageing Research Foundation, Bangalore, India
| | - Shymal K Das
- Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | | | | | | | | |
Collapse
|
2
|
Khatri DK, Choudhary M, Sood A, Singh SB. Anxiety: An ignored aspect of Parkinson’s disease lacking attention. Biomed Pharmacother 2020; 131:110776. [DOI: 10.1016/j.biopha.2020.110776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022] Open
|
3
|
Peng J, Guan J, Shang X. Predicting Parkinson's Disease Genes Based on Node2vec and Autoencoder. Front Genet 2019; 10:226. [PMID: 31001311 PMCID: PMC6454041 DOI: 10.3389/fgene.2019.00226] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Identifying genes associated with Parkinson's disease plays an extremely important role in the diagnosis and treatment of Parkinson's disease. In recent years, based on the guilt-by-association hypothesis, many methods have been proposed to predict disease-related genes, but few of these methods are designed or used for Parkinson's disease gene prediction. In this paper, we propose a novel prediction method for Parkinson's disease gene prediction, named N2A-SVM. N2A-SVM includes three parts: extracting features of genes based on network, reducing the dimension using deep neural network, and predicting Parkinson's disease genes using a machine learning method. The evaluation test shows that N2A-SVM performs better than existing methods. Furthermore, we evaluate the significance of each step in the N2A-SVM algorithm and the influence of the hyper-parameters on the result. In addition, we train N2A-SVM on the recent dataset and used it to predict Parkinson's disease genes. The predicted top-rank genes can be verified based on literature study.
Collapse
Affiliation(s)
| | | | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
4
|
Kasten M, Marras C, Klein C. Nonmotor Signs in Genetic Forms of Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:129-178. [DOI: 10.1016/bs.irn.2017.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Lippai M, Szatmári Z. Autophagy-from molecular mechanisms to clinical relevance. Cell Biol Toxicol 2016; 33:145-168. [PMID: 27957648 DOI: 10.1007/s10565-016-9374-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
Autophagy is a lysosomal degradation pathway of eukaryotic cells that is highly conserved from yeast to mammals. During this process, cooperating protein complexes are recruited in a hierarchic order to the phagophore assembly site (PAS) to mediate the elongation and closure of double-membrane vesicles called autophagosomes, which sequester cytosolic components and deliver their content to the endolysosomal system for degradation. As a major cytoprotective mechanism, autophagy plays a key role in the stress response against nutrient starvation, hypoxia, and infections. Although numerous studies reported that impaired function of core autophagy proteins also contributes to the development and progression of various human diseases such as neurodegenerative disorders, cardiovascular and muscle diseases, infections, and different types of cancer, the function of this process in human diseases remains unclear. Evidence often suggests a controversial role for autophagy in the pathomechanisms of these severe disorders. Here, we provide an overview of the molecular mechanisms of autophagy and summarize the recent advances on its function in human health and disease.
Collapse
Affiliation(s)
- Mónika Lippai
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
| | - Zsuzsanna Szatmári
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
6
|
Tarale P, Sivanesan S, Daiwile AP, Stöger R, Bafana A, Naoghare PK, Parmar D, Chakrabarti T, Kannan K. Global DNA methylation profiling of manganese-exposed human neuroblastoma SH-SY5Y cells reveals epigenetic alterations in Parkinson's disease-associated genes. Arch Toxicol 2016; 91:2629-2641. [PMID: 27913844 DOI: 10.1007/s00204-016-1899-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/24/2016] [Indexed: 01/28/2023]
Abstract
Manganese (Mn) is an essential trace element required for optimal functioning of cellular biochemical pathways in the central nervous system. Elevated exposure to Mn through environmental and occupational exposure can cause neurotoxic effects resulting in manganism, a condition with clinical symptoms identical to idiopathic Parkinson's disease. Epigenetics is now recognized as a biological mechanism involved in the etiology of various diseases. Here, we investigated the role of DNA methylation alterations induced by chronic Mn (100 µM) exposure in human neuroblastoma (SH-SY5Y) cells in relevance to Parkinson's disease. A combined analysis of DNA methylation and gene expression data for Parkinson's disease-associated genes was carried out. Whole-genome bisulfite conversion and sequencing indicate epigenetic perturbation of key genes involved in biological processes associated with neuronal cell health. Integration of DNA methylation data with gene expression reveals epigenetic alterations to PINK1, PARK2 and TH genes that play critical roles in the onset of Parkinsonism. The present study suggests that Mn-induced alteration of DNA methylation of PINK1-PARK2 may influence mitochondrial function and promote Parkinsonism. Our findings provide a basis to further explore and validate the epigenetic basis of Mn-induced neurotoxicity .
Collapse
Affiliation(s)
- Prashant Tarale
- Environmental Health Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.,Schools of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Saravanadevi Sivanesan
- Environmental Health Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
| | - Atul P Daiwile
- Environmental Health Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Reinhard Stöger
- Schools of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Amit Bafana
- Environmental Health Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Pravin K Naoghare
- Environmental Health Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Devendra Parmar
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, 226001, India
| | - Tapan Chakrabarti
- Visvesvaraya National Institute of Technology (VNIT), Nagpur, 440010, India
| | - Krishnamurthi Kannan
- Environmental Health Division, CSIR - National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| |
Collapse
|
7
|
Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2548792. [PMID: 27314012 PMCID: PMC4899583 DOI: 10.1155/2016/2548792] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/08/2016] [Indexed: 02/07/2023]
Abstract
Manganese is a vital nutrient and is maintained at an optimal level (2.5–5 mg/day) in human body. Chronic exposure to manganese is associated with neurotoxicity and correlated with the development of various neurological disorders such as Parkinson's disease. Oxidative stress mediated apoptotic cell death has been well established mechanism in manganese induced toxicity. Oxidative stress has a potential to alter the epigenetic mechanism of gene regulation. Epigenetic insight of manganese neurotoxicity in context of its correlation with the development of parkinsonism is poorly understood. Parkinson's disease is characterized by the α-synuclein aggregation in the form of Lewy bodies in neuronal cells. Recent findings illustrate that manganese can cause overexpression of α-synuclein. α-Synuclein acts epigenetically via interaction with histone proteins in regulating apoptosis. α-Synuclein also causes global DNA hypomethylation through sequestration of DNA methyltransferase in cytoplasm. An individual genetic difference may also have an influence on epigenetic susceptibility to manganese neurotoxicity and the development of Parkinson's disease. This review presents the current state of findings in relation to role of epigenetic mechanism in manganese induced neurotoxicity, with a special emphasis on the development of Parkinson's disease.
Collapse
|
8
|
Zhou ZD, Sathiyamoorthy S, Angeles DC, Tan EK. Linking F-box protein 7 and parkin to neuronal degeneration in Parkinson's disease (PD). Mol Brain 2016; 9:41. [PMID: 27090516 PMCID: PMC4835861 DOI: 10.1186/s13041-016-0218-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/06/2016] [Indexed: 02/01/2023] Open
Abstract
Mutations of F-box protein 7 (FBXO7) and Parkin, two proteins in ubiquitin-proteasome system (UPS), are both implicated in pathogenesis of dopamine (DA) neuron degeneration in Parkinson's disease (PD). Parkin is a HECT/RING hybrid ligase that physically receives ubiquitin on its catalytic centre and passes ubiquitin onto its substrates, whereas FBXO7 is an adaptor protein in Skp-Cullin-F-box (SCF) SCF(FBXO7) ubiquitin E3 ligase complex to recognize substrates and mediate substrates ubiquitination by SCF(FBXO7) E3 ligase. Here, we discuss the overlapping pathophysiologic mechanisms and clinical features linking Parkin and FBXO7 with autosomal recessive PD. Both proteins play an important role in neuroprotective mitophagy to clear away impaired mitochondria. Parkin can be recruited to impaired mitochondria whereas cellular stress can promote FBXO7 mitochondrial translocation. PD-linked FBXO7 can recruit Parkin into damaged mitochondria and facilitate its aggregation. WT FBXO7, but not PD-linked FBXO7 mutants can rescue DA neuron degeneration in Parkin null Drosophila. A better understanding of the common pathophysiologic mechanisms of these two proteins could unravel specific pathways for targeted therapy in PD.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Sushmitha Sathiyamoorthy
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Dario C Angeles
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore. .,Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
9
|
Surathi P, Jhunjhunwala K, Yadav R, Pal PK. Research in Parkinson's disease in India: A review. Ann Indian Acad Neurol 2016; 19:9-20. [PMID: 27011622 PMCID: PMC4782561 DOI: 10.4103/0972-2327.167713] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder affecting patients in large numbers throughout the world. In this article, we review all the published data on PD based on studies in Indian population. We have tried to consolidate the contribution of Indian studies in PD research. We found 95 articles, of which 92 were original research papers. This is a relatively less number, but in the last decade, there has been an increase in research on PD from this country. But most of them seem to be restricted to only a few research institutes. The nonmotor symptoms and genetics are the most commonly studied aspects. The systematic review of the articles reveals that the epidemiology in India may be different with relatively lesser incidence here. Most of the genetic mutations found to cause PD in other population are not found in India, revealing that other genetic factors may be involved. Further research needs to be encouraged to understand the disease in Indian patients better, as all the results cannot be extrapolated from the Western literature to this heterogeneous Indian population. There need to be more studies on therapeutic aspects of the disease.
Collapse
Affiliation(s)
- Pratibha Surathi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, Karnataka, India
| | - Ketan Jhunjhunwala
- Department of Neurology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, Karnataka, India
| |
Collapse
|
10
|
Fiala O, Zahorakova D, Pospisilova L, Kucerova J, Matejckova M, Martasek P, Roth J, Ruzicka E. Parkin (PARK 2) mutations are rare in Czech patients with early-onset Parkinson's disease. PLoS One 2014; 9:e107585. [PMID: 25238391 PMCID: PMC4169530 DOI: 10.1371/journal.pone.0107585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/11/2014] [Indexed: 01/16/2023] Open
Abstract
Objective The aim of the study is to determine the frequency of parkin allelic variants in Czech early-onset Parkinson's disease patients and healthy controls. Methods A total of 70 early-onset Parkinson's disease patients (age at onset ≤40 years) and 75 controls were screened for the sequence variants and exon rearrangements in the parkin gene. Results Parkin mutations were identified in five patients (7.1%): the p.R334C point mutation was present in one patient, four patients had exon deletions. The detected mutations were observed in the heterozygous state except one homozygous deletion of the exon 4. No mutations were obtained in control subjects. A novel sequence variant p.V380I (c.1138G>A) was identified in one control. Non-pathogenic polymorphisms p.S167N and p.D394N were seen in similar percentage in patients and controls, polymorphism p.V380L was almost twice as frequent in controls as in patients. Conclusions Our study contributes to the growing body of evidence on the low frequency of the parkin mutations in the early-onset Parkinson's disease suggesting the potential role of other genes in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Ondrej Fiala
- Department of Neurology and Centre of Clinical Neuroscience, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
- Institute of Neuropsychiatric Care (INEP), Prague, Czech Republic
- * E-mail:
| | - Daniela Zahorakova
- Department of Pediatrics and Adolescent Medicine, 1st Faculty of Medicine, and General University Hospital, Charles University, Prague, Czech Republic
| | - Lenka Pospisilova
- Department of Pediatrics and Adolescent Medicine, 1st Faculty of Medicine, and General University Hospital, Charles University, Prague, Czech Republic
| | - Jana Kucerova
- Department of Pediatrics and Adolescent Medicine, 1st Faculty of Medicine, and General University Hospital, Charles University, Prague, Czech Republic
| | - Milada Matejckova
- Department of Pathology and Molecular Medicine, Thomayer's University Hospital, Prague, Czech Republic
| | - Pavel Martasek
- Department of Pediatrics and Adolescent Medicine, 1st Faculty of Medicine, and General University Hospital, Charles University, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology and Centre of Clinical Neuroscience, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Evzen Ruzicka
- Department of Neurology and Centre of Clinical Neuroscience, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| |
Collapse
|