1
|
Debnath A, Williams PDE, Bamber BA. Reduced Ca2+ transient amplitudes may signify increased or decreased depolarization depending on the neuromodulatory signaling pathway. Front Neurosci 2022; 16:931328. [PMID: 35937887 PMCID: PMC9354622 DOI: 10.3389/fnins.2022.931328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Neuromodulators regulate neuronal excitability and bias neural circuit outputs. Optical recording of neuronal Ca2+ transients is a powerful approach to study the impact of neuromodulators on neural circuit dynamics. We are investigating the polymodal nociceptor ASH in Caenorhabditis elegans to better understand the relationship between neuronal excitability and optically recorded Ca2+ transients. ASHs depolarize in response to the aversive olfactory stimulus 1-octanol (1-oct) with a concomitant rise in somal Ca2+, stimulating an aversive locomotory response. Serotonin (5-HT) potentiates 1-oct avoidance through Gαq signaling, which inhibits L-type voltage-gated Ca2+ channels in ASH. Although Ca2+ signals in the ASH soma decrease, depolarization amplitudes increase because Ca2+ mediates inhibitory feedback control of membrane potential in this context. Here, we investigate octopamine (OA) signaling in ASH to assess whether this negative correlation between somal Ca2+ and depolarization amplitudes is a general phenomenon, or characteristic of certain neuromodulatory pathways. Like 5-HT, OA reduces somal Ca2+ transient amplitudes in ASH neurons. However, OA antagonizes 5-HT modulation of 1-oct avoidance behavior, suggesting that OA may signal through a different pathway. We further show that the pathway for OA diminution of ASH somal Ca2+ consists of the OCTR-1 receptor, the Go heterotrimeric G-protein, and the G-protein activated inwardly rectifying channels IRK-2 and IRK-3, and this pathway reduces depolarization amplitudes in parallel with somal Ca2+ transient amplitudes. Therefore, even within a single neuron, somal Ca2+ signal reduction may indicate either increased or decreased depolarization amplitude, depending on which neuromodulatory signaling pathways are activated, underscoring the need for careful interpretation of Ca2+ imaging data in neuromodulatory studies.
Collapse
Affiliation(s)
- Arunima Debnath
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
| | - Paul D. E. Williams
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Bruce A. Bamber
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
- *Correspondence: Bruce A. Bamber,
| |
Collapse
|
2
|
Emmons SW, Yemini E, Zimmer M. Methods for analyzing neuronal structure and activity in Caenorhabditis elegans. Genetics 2021; 218:6303616. [PMID: 34151952 DOI: 10.1093/genetics/iyab072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 11/12/2022] Open
Abstract
The model research animal Caenorhabditis elegans has unique properties making it particularly advantageous for studies of the nervous system. The nervous system is composed of a stereotyped complement of neurons connected in a consistent manner. Here, we describe methods for studying nervous system structure and function. The transparency of the animal makes it possible to visualize and identify neurons in living animals with fluorescent probes. These methods have been recently enhanced for the efficient use of neuron-specific reporter genes. Because of its simple structure, for a number of years, C. elegans has been at the forefront of connectomic studies defining synaptic connectivity by electron microscopy. This field is burgeoning with new, more powerful techniques, and recommended up-to-date methods are here described that encourage the possibility of new work in C. elegans. Fluorescent probes for single synapses and synaptic connections have allowed verification of the EM reconstructions and for experimental approaches to synapse formation. Advances in microscopy and in fluorescent reporters sensitive to Ca2+ levels have opened the way to observing activity within single neurons across the entire nervous system.
Collapse
Affiliation(s)
- Scott W Emmons
- Department of Genetics and Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 1041, USA
| | - Eviatar Yemini
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Manuel Zimmer
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria and.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| |
Collapse
|
3
|
Ashida K, Shidara H, Hotta K, Oka K. Optical Dissection of Synaptic Plasticity for Early Adaptation in Caenorhabditis elegans. Neuroscience 2020; 428:112-121. [PMID: 31917348 DOI: 10.1016/j.neuroscience.2019.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
To understand neuronal information processing, it is essential to investigate the input-output relationship and its modulation via detailed dissections of synaptic transmission between pre- and postsynaptic neurons. In Caenorhabditis elegans, pre-exposure to an odorant for five minutes reduces chemotaxis (early adaptation). AWC sensory neurons and AIY interneurons are crucial for this adaptation; AWC neurons sense volatile odors, and AIY interneurons receive glutamatergic inputs from AWC neurons. However, modulations via early adaptation of the input-output relationship between AWC and AIY are not well characterized. Here we use a variety of fluorescent imaging techniques to show that reduced synaptic-vesicle release without Ca2+ modulation in AWC neurons suppresses the Ca2+ response in AIY neurons via early adaptation. First, early adaptation modulates the Ca2+ response in AIY but not AWC neurons. Adaptation in the Ca2+ signal measured in AIY neurons is caused by adaptation in glutamate release from AWC neurons. Further, we found that a G protein γ-subunit, GPC-1, is related to modulation of glutamate input to AIY. Our results dissect the modulation of the pre- and postsynaptic relationship in vivo based on optical methods, and demonstrate the importance of neurotransmitter-release modulation in presynaptic neurons without Ca2+ modulation.
Collapse
Affiliation(s)
- Keita Ashida
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| | - Hisashi Shidara
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| | - Kotaro Oka
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan; Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|
4
|
Ashida K, Hotta K, Oka K. The Input-Output Relationship of AIY Interneurons in Caenorhabditis elegans in Noisy Environment. iScience 2019; 19:191-203. [PMID: 31377664 PMCID: PMC6698291 DOI: 10.1016/j.isci.2019.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/21/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
Determining how neurotransmitter input causes various neuronal activities is crucial to understanding neuronal information processing. In Caenorhabditis elegans, AIY interneurons receive several sources of sensory information as glutamate inputs and regulate behavior by integrating these inputs. However, the relationship between glutamate input and the Ca2+ response in AIY under environmental noise, in other words, without explicit stimulation, remains unknown. Here, we show that glutamate-input fluctuations evoke a sporadic Ca2+ response in AIY without stimulation. To ensure that Ca2+ response can be considered AIY output, we show that the membrane-potential depolarization precedes Ca2+ responses in AIY. We used an odor as model stimulation to modulate the sensory inputs. Simultaneous imaging of glutamate input and Ca2+ response, together with glutamate transmission mutants, showed that glutamate-input fluctuations evoke sporadic Ca2+ responses. We identified the input-output relationships under environmental noise in vivo, and our results address the relationship between sensory-input fluctuations and behavioral variability.
Collapse
Affiliation(s)
- Keita Ashida
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan; Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|
5
|
Serotonin Disinhibits a Caenorhabditis elegans Sensory Neuron by Suppressing Ca 2+-Dependent Negative Feedback. J Neurosci 2018; 38:2069-2080. [PMID: 29358363 DOI: 10.1523/jneurosci.1908-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 11/21/2022] Open
Abstract
Neuromodulators, such as serotonin (5-HT), alter neuronal excitability and synaptic strengths, and define different behavioral states. Neuromodulator-dependent changes in neuronal activity patterns are frequently measured using calcium reporters because calcium imaging can easily be performed on intact functioning nervous systems. With only 302 neurons, the nematode Caenorhabditis elegans provides a relatively simple, yet powerful, system to understand neuromodulation at the level of individual neurons. C. elegans hermaphrodites are repelled by 1-octanol, and the initiation of these aversive responses is potentiated by 5-HT. 5-HT acts on the ASH polymodal nociceptors that sense the 1-octanol stimulus. Surprisingly, 5-HT suppresses ASH Ca2+ transients while simultaneously potentiating 1-octanol-dependent ASH depolarization. Here we further explore this seemingly inverse relationship. Our results show the following (1) 5-HT acts downstream of depolarization, through Gαq-mediated signaling and calcineurin, to inhibit L-type voltage-gated Ca2+ channels; (2) the 1-octanol-evoked Ca2+ transients in ASHs inhibit depolarization; and (3) the Ca2+-activated K+ channel, SLO-1, acts downstream of 5-HT and is a critical regulator of ASH response dynamics. These findings define a Ca2+-dependent inhibitory feedback loop that can be modulated by 5-HT to increase neuronal excitability and regulate behavior, and highlight the possibility that neuromodulator-induced changes in the amplitudes of Ca2+ transients do not necessarily predict corresponding changes in depolarization.SIGNIFICANCE STATEMENT Neuromodulators, such as 5-HT, modify behavior by regulating excitability and synaptic efficiency in neurons. Neuromodulation is often studied using Ca2+ imaging, whereby neuromodulator-dependent changes in neuronal activity levels can be detected in intact, functioning circuits. Here we show that 5-HT reduces the amplitude of depolarization-dependent Ca2+ transients in a C. elegans nociceptive neuron, through Gαq signaling and calcineurin but that Ca2+ itself inhibits depolarization, likely through Ca2+-activated K+ channels. The net effect of 5-HT, therefore, is to increase neuronal excitability through disinhibition. These results establish a novel 5-HT signal transduction pathway, and demonstrate that neuromodulators can change Ca2+ signals and depolarization amplitudes in opposite directions, simultaneously, within a single neuron.
Collapse
|
6
|
Compartmentalized cGMP Responses of Olfactory Sensory Neurons in Caenorhabditis elegans. J Neurosci 2017; 37:3753-3763. [PMID: 28270568 DOI: 10.1523/jneurosci.2628-16.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 01/13/2023] Open
Abstract
Cyclic guanosine monophosphate (cGMP) plays a crucial role as a second messenger in the regulation of sensory signal transduction in many organisms. In AWC olfactory sensory neurons of Caenorhabditis elegans, cGMP also has essential and distinctive functions in olfactory sensation and adaptation. According to molecular genetic studies, when nematodes are exposed to odorants, a decrease in cGMP regulates cGMP-gated channels for olfactory sensation. Conversely, for olfactory adaptation, an increase in cGMP activates protein kinase G to modulate cellular physiological functions. Although these opposing cGMP responses in single neurons may occur at the same time, it is unclear how cGMP actually behaves in AWC sensory neurons. A hypothetical explanation for opposing cGMP responses is region-specific behaviors in AWC: for odor sensation, cGMP levels in cilia could decrease, whereas odor adaptation is mediated by increased cGMP levels in soma. Therefore, we visualized intracellular cGMP in AWC with a genetically encoded cGMP indicator, cGi500, and examined spatiotemporal cGMP responses in AWC neurons. The cGMP imaging showed that, after odor exposure, cGMP levels in AWC cilia decreased transiently, whereas levels in dendrites and soma gradually increased. These region-specific responses indicated that the cGMP responses in AWC neurons are explicitly compartmentalized. In addition, we performed Ca2+ imaging to examine the relationship between cGMP and Ca2+ These results suggested that AWC sensory neurons are in fact analogous to vertebrate photoreceptor neurons.SIGNIFICANCE STATEMENT Cyclic guanosine monophosphate (cGMP) plays crucial roles in the regulation of sensory signal transduction in many animals. In AWC olfactory sensory neurons of Caenorhabditis elegans, cGMP also has essential and distinctive functions involving olfactory sensation and adaptation. Here, we visualized intracellular cGMP in AWC neurons with a genetically encoded cGMP indicator and examined how these different functions could be regulated by the same second messenger in single neurons. cGMP imaging showed that, after odor application, cGMP levels in cilia decreased transiently, whereas levels in dendrites and soma gradually increased. These region-specific responses indicated that the responses in AWC neurons are explicitly compartmentalized. In addition, by combining cGMP and Ca2+ imaging, we observed that AWC neurons are analogous to vertebrate photoreceptor neurons.
Collapse
|
7
|
Sasakura H, Tsukada Y, Takagi S, Mori I. Japanese studies on neural circuits and behavior of Caenorhabditis elegans. Front Neural Circuits 2013; 7:187. [PMID: 24348340 PMCID: PMC3842693 DOI: 10.3389/fncir.2013.00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 11/03/2013] [Indexed: 01/25/2023] Open
Abstract
The nematode Caenorhabditis elegans is an ideal organism for studying neural plasticity and animal behaviors. A total of 302 neurons of a C. elegans hermaphrodite have been classified into 118 neuronal groups. This simple neural circuit provides a solid basis for understanding the mechanisms of the brains of higher animals, including humans. Recent studies that employ modern imaging and manipulation techniques enable researchers to study the dynamic properties of nervous systems with great precision. Behavioral and molecular genetic analyses of this tiny animal have contributed greatly to the advancement of neural circuit research. Here, we will review the recent studies on the neural circuits of C. elegans that have been conducted in Japan. Several laboratories have established unique and clever methods to study the underlying neuronal substrates of behavioral regulation in C. elegans. The technological advances applied to studies of C. elegans have allowed new approaches for the studies of complex neural systems. Through reviewing the studies on the neuronal circuits of C. elegans in Japan, we will analyze and discuss the directions of neural circuit studies.
Collapse
Affiliation(s)
- Hiroyuki Sasakura
- Laboratory of Molecular Neurobiology, Division of Biological Science, Nagoya University Nagoya, Japan
| | - Yuki Tsukada
- Laboratory of Molecular Neurobiology, Division of Biological Science, Nagoya University Nagoya, Japan
| | - Shin Takagi
- Laboratory of Brain Function and Structure, Division of Biological Science, Nagoya University Nagoya, Japan
| | - Ikue Mori
- Laboratory of Molecular Neurobiology, Division of Biological Science, Nagoya University Nagoya, Japan
| |
Collapse
|