1
|
Fontana IC, Kumar A, Nordberg A. The role of astrocytic α7 nicotinic acetylcholine receptors in Alzheimer disease. Nat Rev Neurol 2023; 19:278-288. [PMID: 36977843 DOI: 10.1038/s41582-023-00792-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/30/2023]
Abstract
The ongoing search for therapeutic interventions in Alzheimer disease (AD) has highlighted the complexity of this condition and the need for additional biomarkers, beyond amyloid-β (Aβ) and tau, to improve clinical assessment. Astrocytes are brain cells that control metabolic and redox homeostasis, among other functions, and are emerging as an important focus of AD research owing to their swift response to brain pathology in the initial stages of the disease. Reactive astrogliosis - the morphological, molecular and functional transformation of astrocytes during disease - has been implicated in AD progression, and the definition of new astrocytic biomarkers could help to deepen our understanding of reactive astrogliosis along the AD continuum. As we highlight in this Review, one promising biomarker candidate is the astrocytic α7 nicotinic acetylcholine receptor (α7nAChR), upregulation of which correlates with Aβ pathology in the brain of individuals with AD. We revisit the past two decades of research into astrocytic α7nAChRs to shed light on their roles in the context of AD pathology and biomarkers. We discuss the involvement of astrocytic α7nAChRs in the instigation and potentiation of early Aβ pathology and explore their potential as a target for future reactive astrocyte-based therapeutics and imaging biomarkers in AD.
Collapse
Affiliation(s)
- Igor C Fontana
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
Liu Y, Li H, Li G, Kang Y, Shi J, Kong T, Yang X, Xu J, Li C, Su KP, Wang F. Active smoking, sleep quality and cerebrospinal fluid biomarkers of neuroinflammation. Brain Behav Immun 2020; 89:623-627. [PMID: 32717405 DOI: 10.1016/j.bbi.2020.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUNDS Cigarette smoking has been shown to be associated with sleep disorders and the related neuropathogenesis including neuroinflammation. Previous studies showed that pro- and anti-inflammatory cytokines are physiologically important in maintaining circadian function. In addition, sleep deprivation leads to immune dysregulations. However, no study has been published yet by using cerebrospinal fluid (CSF) biomarkers of neuroinflammation to investigate the relationship between active cigarette smoking and sleep disorders. METHODS CSF tissues from subjects of 191 male subjects (non-smokers n = 104; active smokers n = 87) receiving local anesthesia before surgery for anterior cruciate ligament injuries were obtained after the assessment of clinical information and Pittsburgh Sleep Quality Index (PSQI). The levels of tumor necrosis factor alpha (TNFα), Interleukin (IL) 1 beta (IL1β), IL2, IL4, IL6 and IL10 were measured using radioimmunoassay and ELISA. RESULTS PSQI scores were significantly higher in active smokers than that in non-smokers (p < 0.001, Cohen's d = 0.63). Significantly higher levels of CSF TNFα were found in active smokers compared to non-smokers (28 ± 1.97 vs. 22.97 ± 2.48, p < 0.05, Cohen's d = 2.23). There was a positive correlation between CSF IL1β levels and PSQI scores in non-smokers (r = 0.31, p = 0.01, adjustment R-Squared = 0.11). DISCUSSION This is the first study to reveal the association between higher CSF TNFα levels and poorer sleep quality in active smoking. In addition, CSF IL1β levels might be a potential biomarker in central nervous system for circadian dysregulation.
Collapse
Affiliation(s)
- Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Hui Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China; The Second Affiliated Hospital, Xinjiang Medical University, Urumqi 830063, China; Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot 010110, China
| | - Guohua Li
- The Second Affiliated Hospital, Xinjiang Medical University, Urumqi 830063, China
| | - Yimin Kang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot 010110, China
| | - Jianping Shi
- The Second Affiliated Hospital, Xinjiang Medical University, Urumqi 830063, China
| | - Tiantian Kong
- The Second Affiliated Hospital, Xinjiang Medical University, Urumqi 830063, China
| | - Xiaoyu Yang
- Beijing Jishuitan Hospital, Beijing 100035, China
| | - Jinzhong Xu
- The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, China
| | - Cunbao Li
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot 010110, China
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China; The Second Affiliated Hospital, Xinjiang Medical University, Urumqi 830063, China.
| |
Collapse
|
3
|
Abstract
The pervasive and devastating nature of substance use disorders underlies the need for the continued development of novel pharmacotherapies. We now know that glia play a much greater role in neuronal processes than once believed. The various types of glial cells (e.g., astrocytes, microglial, oligodendrocytes) participate in numerous functions that are crucial to healthy central nervous system function. Drugs of abuse have been shown to interact with glia in ways that directly contribute to the pharmacodynamic effects responsible for their abuse potential. Through their effect upon glia, drugs of abuse also alter brain function resulting in behavioral changes associated with substance use disorders. Therefore, drug-induced changes in glia and inflammation within the central nervous system (neuroinflammation) have been investigated to treat various aspects of drug abuse and dependence. This article presents a brief overview of the effects of each of the major classes of addictive drugs on glia. Next, the paper reviews the pre-clinical and clinical studies assessing the effects that glial modulators have on abuse-related behavioral effects, such as pleasure, withdrawal, and motivation. There is a strong body of pre-clinical literature demonstrating the general effectiveness of several glia-modulating drugs in models of reward and relapse. Clinical studies have also yielded promising results, though not as robust. There is still much to disentangle regarding the integration between addictive drugs and glial cells. Improved understanding of the relationship between glia and the pathophysiology of drug abuse should allow for more precise exploration in the development and testing of glial-directed treatments for substance use disorders.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
4
|
Wang A, Zhu G, Qian P, Zhu T. Tetramethylpyrazine reduces blood-brain barrier permeability associated with enhancement of peripheral cholinergic anti-inflammatory effects for treating traumatic brain injury. Exp Ther Med 2017; 14:2392-2400. [PMID: 28962173 DOI: 10.3892/etm.2017.4754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 04/28/2017] [Indexed: 01/03/2023] Open
Abstract
Traumatic brain injury (TBI) is a diverse group of intracranial injuries resulting from external mechanical insults to the brain. While basic and clinical research for TBI has been conducted for decades, it has not identified cost-effective medical interventions for treating TBI. Tetramethylpyrazine (TMP), which is derived from the Chinese herb, Ligusticum chuanxiong Hort (Chuan Xiong), has been clinically used for treating ischemic brain injury for years. However, whether TMP could provide effective benefits for improving the outcomes following TBI is unknown. In the present study, using controlled cortical impact (CCI) injury to create an animal model of TBI, the potential effects of TMP on improving blood-brain barrier (BBB) permeability in the early phase of the secondary injury, as well as the splenic anti-inflammatory activities, were evaluated. Cognitive functions were also assessed by Morris water maze trials following TBI. Results demonstrated that, at 24 h after CCI injury, BBB permeability was significantly reduced (P<0.05) by the application of TMP. In addition, within 24 h after CCI injury, the plasma levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and protein and mRNA expression levels of IL-1β and TNF-α in the spleen were significantly lowered by TMP (P<0.05). Furthermore, within 24 h after CCI injury, the activation of the splenic anti-inflammatory effects mediated by nicotinic acetylcholine receptor α7 (nAChRa7) stimulation were significantly enhanced by TMP (P<0.05). Additionally, impaired spatial memory acquisition and consolidation were significantly improved by TMP after CCI injury (P<0.05). Together, in light of these data, in the treatment of TBI, TMP could effectively reduce BBB permeability, which may be closely associated with the enhanced splenic anti-inflammatory effects activated by nAChRa7 stimulation, and potentially improve cognitive recovery concerning spatial learning and memory.
Collapse
Affiliation(s)
- Aimin Wang
- Department of Intensive Care Unit, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu 215006, P.R. China
| | - Guangbin Zhu
- Department of Intensive Care Unit, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu 215006, P.R. China
| | - Ping Qian
- Department of Intensive Care Unit, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu 215006, P.R. China
| | - Tao Zhu
- Department of Intensive Care Unit, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu 215006, P.R. China
| |
Collapse
|
5
|
Damar U, Gersner R, Johnstone JT, Schachter S, Rotenberg A. Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research. Expert Rev Neurother 2016; 16:671-80. [PMID: 27086593 DOI: 10.1080/14737175.2016.1175303] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Huperzine A (HupA) is an acetylcholinesterase (AChE) inhibitor extracted from Huperzia Serrata, a firmoss, which has been used for various diseases in traditional Chinese medicine for fever and inflammation. More recently, it has been used in Alzheimer's disease and other forms of dementia with a presumed mechanism of action via central nicotinic and muscarinic receptors. HupA is marketed as a dietary supplement in the U.S. This article reviews newly proposed neuroprotective and anticonvulsant HupA properties based on animal studies. HupA exerts its effects mainly via α7nAChRs and α4β2nAChRs, thereby producing a potent anti-inflammatory response by decreasing IL-1β, TNF-α protein expression, and suppressing transcriptional activation of NF-κB signaling. Thus, it provides protection from excitotoxicity and neuronal death as well as increase in GABAergic transmission associated with anticonvulsant activity.
Collapse
Affiliation(s)
- U Damar
- a F.M. Kirby Neurobiology Center, Department of Neurology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA
| | - R Gersner
- a F.M. Kirby Neurobiology Center, Department of Neurology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA
| | - J T Johnstone
- b Research and Development - Neurology , Biscayne Pharmaceuticals, Inc ., Miami , FL , USA
| | - S Schachter
- c Departments of Neurology, Beth Israel Deaconess Medical Center, Massachusetts General Hospital , Harvard Medical School , Boston , MA , USA
| | - A Rotenberg
- a F.M. Kirby Neurobiology Center, Department of Neurology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
6
|
Das UN. Inflammatory bowel disease as a disorder of an imbalance between pro- and anti-inflammatory molecules and deficiency of resolution bioactive lipids. Lipids Health Dis 2016; 15:11. [PMID: 26762544 PMCID: PMC4712465 DOI: 10.1186/s12944-015-0165-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 12/08/2015] [Indexed: 12/30/2022] Open
Abstract
The inflammatory process seen in inflammatory bowel disease (IBD) is due to excess production of pro-inflammatory cytokines interleukin-1 (IL-1), IL-6, tumor necrosis factor-α (TNF-α), interferons (IFNs), macrophage migration inhibitory factor (MIF), HMGB1 (high mobility group B1) and possibly, a reduction in anti-inflammatory cytokines IL-10, IL-4, and transforming growth factor-β (TGF-β). These pro-inflammatory molecules lead to increased production of reactive oxygen species (ROS) including nitric oxide resulting in target tissue damage. I propose that inadequate production of inflammation resolving molecules lipoxins, resolvins, protectins, maresins and nitrolipids that suppress inflammation, ROS production, enhance wound healing and have cytoprotective properties results in inappropriate inflammation, delay in healing/repair process and so target tissue/organ damage continues in IBD. Hence, suggested therapeutic approach could include administration of stable synthetic analogues of lipoxins, resolvins, protectins, maresins and nitrolipids. This implies that measuring urine, stool and plasma levels of lipoxins, resolvins, protectins, maresins and nitrolipids may be used to detect the onset, progression and response to treatment of IBD.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2020 S 360th St, # K-202, Federal Way, WA, 98003, USA. .,BioScience Research Centre and Department of Medicine, GVP Hospital, Gayatri Vidya Parishad College of Engineering Campus, Madhurawada, Visakhapatnam, 530 048, India.
| |
Collapse
|
7
|
Role of astrocytes in memory and psychiatric disorders. ACTA ACUST UNITED AC 2014; 108:240-51. [PMID: 25169821 DOI: 10.1016/j.jphysparis.2014.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/12/2014] [Accepted: 08/18/2014] [Indexed: 01/10/2023]
Abstract
Over the past decade, the traditional description of astrocytes as being merely accessories to brain function has shifted to one in which their role has been pushed into the forefront of importance. Current views suggest that astrocytes:(1) are excitable through calcium fluctuations and respond to neurotransmitters released at synapses; (2) communicate with each other via calcium waves and release their own gliotransmitters which are essential for synaptic plasticity; (3) activate hundreds of synapses at once, thereby synchronizing neuronal activity and activating or inhibiting complete neuronal networks; (4) release vasoactive substances to the smooth muscle surrounding blood vessels enabling the coupling of circulation (blood flow) to local brain activity; and (5) release lactate in an activity-dependent manner in order to supply neuronal metabolic demand. In consequence, the role of astrocytes and astrocytic gliotransmitters is now believed to be critical for higher brain function and recently, evidence begins to gather suggesting that astrocytes are pivotal for learning and memory. All of the above are reviewed here while focusing on the role of astrocytes in memory and psychiatric disorders.
Collapse
|