Memari S, Yiou E, Fourcade P. The role(s) of "Simultaneous Postural Adjustments" (SPA) during Single Step revealed with the Lissajous method.
J Biomech 2020;
108:109910. [PMID:
32636015 DOI:
10.1016/j.jbiomech.2020.109910]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 11/26/2022]
Abstract
Dynamical phenomena in the postural chain occur before, during and after the voluntary movement. These phenomena correspond to anticipatory (APA), simultaneous (SPA), and consecutive (CPA) postural adjustments, respectively. APA and, more recently, CPA, have been extensively investigated in the literature. SPA have surprisingly received much less attention. The aim of the present study was to examine the role(s) of SPA associated with a single step task (SST). Ten healthy young adults performed series of SST on a force-plate. A 2-DOF mechanical model was used to separate the dynamics of the swing leg and the dynamics of the rest of the body, corresponding to the focal and the postural component of the SST, respectively. The postural component was plotted against the focal one during SPA (from heel-off to foot-contact), and this plot was modelled as a Lissajous ellipse. Result showed that this ellipse systematically ran through the same three quadrants of the diagram. For each of these quadrants, the role of the postural component in regards to the focal one was interpreted according to the relative orientation of the postural and focal dynamics. Results thus showed that SPA ensured the following successive roles: counter-perturbation of swing leg dynamics following heel-off, propulsion of swing leg, counter-perturbation of swing leg dynamics again, and then braking swing leg movement. These new findings contribute to a better knowledge of postural adjustments properties, and may provide new insights for understanding balance troubles with aging and in neurological patients (e.g. people with Parkinson's disease).
Collapse