1
|
Rind L, Mahmood T, Siddiqui MH, Ahsan F, Shamim A, Anwar A, Yadav RK. From Hypertension to Beyond: Unraveling the Diverse Mechanisms of Olmesartan in Disease Modulation. Drug Res (Stuttg) 2024; 74:93-101. [PMID: 38350635 DOI: 10.1055/a-2244-3136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Olmesartan, originally known for its antihypertensive properties, exhibits promising potential in addressing inflammation-mediated diseases. As an angiotensin II receptor blocker (ARB), Olmesartan influences pivotal pathways, including reactive oxygen species, cytokines, NF-κB, TNF-α, and MAPK. This suggests a viable opportunity for repurposing the drug in conditions such as ulcerative colitis, neuropathy, nephropathy, and cancer, as supported by multiple preclinical studies. Ongoing clinical trials, particularly in cardiomyopathy and nephropathy, suggest a broader therapeutic scope for Olmesartan. Repurposing efforts would entail comprehensive investigations using disease-specific preclinical models and dedicated clinical studies. The drug's established safety profile, wide availability, and well-understood ARB mechanism of action offer distinct advantages that could facilitate a streamlined repurposing process. In summary, Olmesartan's versatile impact on inflammation-related pathways positions it as a promising candidate for repurposing across various diseases. Ongoing clinical trials and the drug's favorable attributes enhance its appeal for further exploration and potential application in diverse medical contexts.
Collapse
Affiliation(s)
- Laiba Rind
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Tarique Mahmood
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | | | - Farogh Ahsan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Arshiya Shamim
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Aamir Anwar
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Rajnish Kumar Yadav
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| |
Collapse
|
2
|
Hammadi SH, Hassan MA, Allam EA, Elsharkawy AM, Shams SS. Effect of sacubitril/valsartan on cognitive impairment in colchicine-induced Alzheimer's model in rats. Fundam Clin Pharmacol 2023; 37:275-286. [PMID: 36203311 DOI: 10.1111/fcp.12837] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease. There is epidemiological evidence that heart failure (HF) patients are at higher risk of developing AD, and the impact of sacubitril/valsartan, the first angiotensin receptor-neprilysin inhibitor (ARNI) approved for HF, on cognitive functions is still controversial. To investigate the effect of sacubitril/valsartan on cognitive functions in colchicine-induced AD rat model. Forty adult male Wistar rats were equally allocated into four groups (each of 10 rats): Group I: normal control, Group II: intracerebroventricular injection of colchicine (15 μg/5 μl/bilaterally), Group III: colchicine (15 μg/5 μl/bilaterally, icv) + oral sacubitril/valsartan (100 mg/kg/day) for 25 days, and Group IV: colchicine (15 μg/5 μl/bilaterally, icv) + oral valsartan (50 mg/kg/day) for 25 days. Behavioral assessment was done using Morris water maze and passive avoidance tasks. Biochemically, β-amyloid (1-40 and 1-42) peptides, oxidative stress (malondialdehyde and superoxide dismutase) and inflammatory (tumor necrosis factor-alpha) parameters were measured in hippocampus and prefrontal cortex. Sacubitril/valsartan exaggerated colchicine-induced cognitive impairment in both Morris water maze and passive avoidance tasks and was associated with significant increase in β-amyloid accumulation, oxidative stress, and inflammation versus valsartan. Sacubitril/valsartan caused deleterious effect on cognitive impairment and biochemical alterations in colchicine-induced AD rat model. Hence, special caution should be taken following long-term intake of ARNI on cognitive functions.
Collapse
Affiliation(s)
- Sami H Hammadi
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Madiha A Hassan
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman A Allam
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amal M Elsharkawy
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sherouk S Shams
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Li X, Xuan W, Chen D, Gao H, Wang G, Guo Q, Wang Y, Song H, Cai B. Research Progress of Alzheimer's Disease Therapeutic Drugs: Based on Renin-Angiotensin System Axis. J Alzheimers Dis 2020; 78:1315-1338. [PMID: 33164932 DOI: 10.3233/jad-200770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is widely recognized that Alzheimer's disease (AD) has a complicate link to renin-angiotensin system (RAS). It is known that cerebrovascular disease has some connections with AD, but most of the studies are still conducted in parallel or independently. Although previous research came up with large number of hypotheses about the pathogenesis of AD, it does not include the mechanism of RAS-related regulation of AD. It has been found that many components of RAS have been changed in AD. For example, the multifunctional and high-efficiency vasoconstrictor Ang II and Ang III with similar effects are changed under the action of other RAS signal peptides; these signal peptides are believed to help improve nerve injury and cognitive function. These changes may lead to neuropathological changes of AD, and progressive defects of cognitive function, which are association with some hypotheses of AD. The role of RAS in AD gradually attracts our attention, and RAS deserved to be considered carefully in the pathogenesis of AD. This review discusses the mechanisms of RAS participating in the three current hypotheses of AD: neuroinflammation, oxidative stress and amyloid-β protein (Aβ) hypothesis, as well as the drugs that regulate RAS systems already in clinical or in clinical trials. It further demonstrates the importance of RAS in the pathogenesis of AD, not only because of its multiple aspects of participation, which may be accidental, but also because of the availability of RAS drugs, which can be reused as therapies of AD.
Collapse
Affiliation(s)
- Xinquan Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Weiting Xuan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Dabao Chen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Huawu Gao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Guangyun Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Qiaoru Guo
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Biao Cai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
4
|
Royea J, Hamel E. Brain angiotensin II and angiotensin IV receptors as potential Alzheimer's disease therapeutic targets. GeroScience 2020; 42:1237-1256. [PMID: 32700176 DOI: 10.1007/s11357-020-00231-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is multifactorial in nature. Yet, despite being the most common form of dementia in the elderly, AD's primary cause remains unknown. As such, there is currently little to offer AD patients as the vast majority of recently tested therapies have either failed in well-controlled clinical trials or inadequately treat AD. Recently, emerging preclinical and clinical evidence has associated the brain renin angiotensin system (RAS) to AD pathology. Accordingly, various components of the brain RAS were shown to be altered in AD patients and mouse models, including the angiotensin II type 1 (AT1R), angiotensin IV receptor (AT4R), and Mas receptors. Collectively, the changes observed within the RAS have been proposed to contribute to many of the neuropathological hallmarks of AD, including the neuronal, cognitive, and vascular dysfunctions. Accumulating evidence has additionally identified antihypertensive medications targeting the RAS, particularly angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs), to delay AD onset and progression. In this review, we will discuss the emergence of the RAS's involvement in AD and highlight putative mechanisms of action underlying ARB's beneficial effects that may explain their ability to modify the risk of developing AD or AD progression. The RAS may provide novel molecular targets for recovering memory pathways, cerebrovascular function, and other pathological landmarks of AD.
Collapse
Affiliation(s)
- Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
5
|
Kikuchi K, Fujita Y, Shen X, Liu J, Terakawa T, Nishikata D, Niibori S, Ito T, Ashidate K, Kikuchi T, Kikuchi Y, Maeda T, Zou K, Komano H. Interaction between Angiotensin Receptor and β-Adrenergic Receptor Regulates the Production of Amyloid β-Protein. Biol Pharm Bull 2020; 43:731-735. [PMID: 32238715 DOI: 10.1248/bpb.b20-00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is characterized by the formation of extracellular amyloid plaques containing the amyloid β-protein (Aβ) within the parenchyma of the brain. Aβ is considered to be the key pathogenic factor of AD. Recently, we showed that Angiotensin II type 1 receptor (AT1R), which regulates blood pressure, is involved in Aβ production, and that telmisartan (Telm), which is an angiotensin II receptor blocker (ARB), increased Aβ production via AT1R. However, the precise mechanism underlying how AT1R is involved in Aβ production is unknown. Interestingly, AT1R, a G protein-coupled receptor, was strongly suggested to be involved in signal transduction by heterodimerization with β2-adrenergic receptor (β2-AR), which is also shown to be involved in Aβ generation. Therefore, in this study, we aimed to clarify whether the interaction between AT1R and β2-AR is involved in the regulation of Aβ production. To address this, we analyzed whether the increase in Aβ production by Telm treatment is affected by β-AR antagonist using fibroblasts overexpressing amyloid precursor protein (APP). We found that the increase in Aβ production by Telm treatment was decreased by the treatment of β2-AR selective antagonist ICI-118551 more strongly than the treatment of β1-AR selective antagonists. Furthermore, deficiency of AT1R abolished the effect of β2-AR antagonist on the stimulation of Aβ production caused by Telm. Taken together, the interaction between AT1R and β2-AR is likely to be involved in Aβ production.
Collapse
Affiliation(s)
- Kota Kikuchi
- Division of Neuroscience, Department of Biological Pharmacy, School of Pharmacy, Iwate Medical University.,Department of Pharmacy, Japanese Red Cross Morioka Hospital
| | - Yu Fujita
- Division of Neuroscience, Department of Biological Pharmacy, School of Pharmacy, Iwate Medical University
| | - Xuefeng Shen
- Division of Neuroscience, Department of Biological Pharmacy, School of Pharmacy, Iwate Medical University
| | - Junjun Liu
- Division of Neuroscience, Department of Biological Pharmacy, School of Pharmacy, Iwate Medical University
| | - Tomoki Terakawa
- Division of Neuroscience, Department of Biological Pharmacy, School of Pharmacy, Iwate Medical University
| | - Daiki Nishikata
- Division of Neuroscience, Department of Biological Pharmacy, School of Pharmacy, Iwate Medical University
| | - Sho Niibori
- Division of Neuroscience, Department of Biological Pharmacy, School of Pharmacy, Iwate Medical University
| | - Takayuki Ito
- Division of Neuroscience, Department of Biological Pharmacy, School of Pharmacy, Iwate Medical University
| | - Kazuyuki Ashidate
- Division of Neuroscience, Department of Biological Pharmacy, School of Pharmacy, Iwate Medical University
| | - Takuya Kikuchi
- Division of Neuroscience, Department of Biological Pharmacy, School of Pharmacy, Iwate Medical University
| | - Yu Kikuchi
- Division of Neuroscience, Department of Biological Pharmacy, School of Pharmacy, Iwate Medical University
| | - Tomoji Maeda
- Department of Pharmacology, Nihon Pharmaceutical University
| | - Kun Zou
- Department of Biochemistry, School of Medicine, Nagoya City University
| | - Hiroto Komano
- Division of Neuroscience, Department of Biological Pharmacy, School of Pharmacy, Iwate Medical University
| |
Collapse
|
6
|
Lebouvier T, Chen Y, Duriez P, Pasquier F, Bordet R. Antihypertensive agents in Alzheimer's disease: beyond vascular protection. Expert Rev Neurother 2019; 20:175-187. [PMID: 31869274 DOI: 10.1080/14737175.2020.1708195] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Midlife hypertension has been consistently linked with increased risk of cognitive decline and Alzheimer's disease (AD). Observational studies and randomized trials show that the use of antihypertensive therapy is associated with a lesser incidence or prevalence of cognitive impairment and dementia. However, whether antihypertensive agents specifically target the pathological process of AD remains elusive.Areas covered: This review of literature provides an update on the clinical and preclinical arguments supporting anti-AD properties of antihypertensive drugs. The authors focused on validated all classes of antihypertensive treatments such as angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARB), calcium channel blockers (CCB), β-blockers, diuretics, neprilysin inhibitors, and other agents. Three main mechanisms can be advocated: action on the concurrent vascular pathology, action on the vascular component of Alzheimer's pathophysiology, and action on nonvascular targets.Expert opinion: In 2019, while there is no doubt that hypertension should be treated in primary prevention of vascular disease and in secondary prevention of stroke and mixed dementia, the place of antihypertensive agents in the secondary prevention of 'pure' AD remains an outstanding question.
Collapse
Affiliation(s)
- Thibaud Lebouvier
- Inserm URM_S1172, University of Lille, Lille, France.,DISTALZ, University of Lille, Lille, France
| | - Yaohua Chen
- DISTALZ, University of Lille, Lille, France.,Inserm, CHU Lille, University of Lille, Lille, France
| | | | - Florence Pasquier
- DISTALZ, University of Lille, Lille, France.,Inserm, CHU Lille, University of Lille, Lille, France
| | - Régis Bordet
- Inserm, CHU Lille, University of Lille, Lille, France
| |
Collapse
|
7
|
Wang Y, Feng X, Shen B, Ma J, Zhao W. Is Vascular Amyloidosis Intertwined with Arterial Aging, Hypertension and Atherosclerosis? Front Genet 2017; 8:126. [PMID: 29085385 PMCID: PMC5649204 DOI: 10.3389/fgene.2017.00126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/04/2017] [Indexed: 12/21/2022] Open
Abstract
Vascular amyloidosis (VA) is a component of aging, but both VA and aging move forward together. Although, not all age-related molecules are involved with VA, some molecules are involved in a crosstalk between both of them. However, the cellular mechanism by which, vascular cells are phenotypically shifted to arterial remodeling, is not only involved in aging but also linked to VA. Additionally, patients with hypertension and atherosclerosis are susceptible to VA, while amyloidosis alone may provide fertile soil for the initiation and progression of subsequent hypertension and atherosclerosis. It is known that hypertension, atherosclerosis and amyloidosis can be viewed as accelerated aging. This review summarizes the available experimental and clinical evidence to help the reader to understand the advance and underlying mechanisms for VA involvement in and interaction with aging. Taken together, it is clear that VA, hypertension and atherosclerosis are closely intertwined with arterial aging as equal partners.
Collapse
Affiliation(s)
- Yushi Wang
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxing Feng
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Jing Ma
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Waiou Zhao
- Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Luo Y, Zhao X, Zhou J, Yang J, Zhang Y, Kuang W, Peng J, Chen L, Zeng J. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun 2017; 8:573. [PMID: 28924171 PMCID: PMC5603535 DOI: 10.1038/s41467-017-00680-8] [Citation(s) in RCA: 394] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 07/19/2017] [Indexed: 02/05/2023] Open
Abstract
The emergence of large-scale genomic, chemical and pharmacological data provides new opportunities for drug discovery and repositioning. In this work, we develop a computational pipeline, called DTINet, to predict novel drug-target interactions from a constructed heterogeneous network, which integrates diverse drug-related information. DTINet focuses on learning a low-dimensional vector representation of features, which accurately explains the topological properties of individual nodes in the heterogeneous network, and then makes prediction based on these representations via a vector space projection scheme. DTINet achieves substantial performance improvement over other state-of-the-art methods for drug-target interaction prediction. Moreover, we experimentally validate the novel interactions between three drugs and the cyclooxygenase proteins predicted by DTINet, and demonstrate the new potential applications of these identified cyclooxygenase inhibitors in preventing inflammatory diseases. These results indicate that DTINet can provide a practically useful tool for integrating heterogeneous information to predict new drug-target interactions and repurpose existing drugs.Network-based data integration for drug-target prediction is a promising avenue for drug repositioning, but performance is wanting. Here, the authors introduce DTINet, whose performance is enhanced in the face of noisy, incomplete and high-dimensional biological data by learning low-dimensional vector representations.
Collapse
Affiliation(s)
- Yunan Luo
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xinbin Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jingtian Zhou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinglin Yang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanqing Zhang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenhua Kuang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Nation DA, Ho J, Yew B. Older Adults Taking AT1-Receptor Blockers Exhibit Reduced Cerebral Amyloid Retention. J Alzheimers Dis 2016; 50:779-89. [PMID: 26757036 DOI: 10.3233/jad-150487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Evidence suggests that angiotensin II AT1-receptor blockers (ARBs) may be protective against dementia, and studies in transgenic animals indicate that this may be due to improved amyloid-β (Aβ) clearance. OBJECTIVE We investigated whether taking ARBs was associated with an attenuation of age-related increases in cerebral Aβ retention, and reduced progression to dementia. METHODS Eight hundred seventy-one stroke-free and dementia-free older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study underwent baseline lumbar puncture, and a subgroup (n = 124) underwent 12 and 24 month follow-up lumbar puncture. Participants were followed at variable intervals for clinical progression to dementia. Linear mixed models and ANCOVA compared ARBs users with those taking other antihypertensives (O-antiHTN) or no antihypertensives (No-antiHTN) on cerebrospinal fluid (CSF) Aβ and phosphorylated tau (P-tau) levels. Cox regression and chi-square analyses compared groups on progression to dementia. RESULTS ARBs users exhibited greater vascular risk and lower educational attainment than the No-antiHTN group. Longitudinal analyses indicated higher CSF Aβ and lower P-tau in ARBs users versus other groups. Cross-sectional analyses revealed age-related decreases in CSF Aβ in other groups but not ARBs users. ARBs users were less likely to progress to dementia and showed reduced rate of progression relative to the No-antiHTN group. DISCUSSION Patients taking ARBs showed an attenuation of age-related decreases in CSF Aβ, a finding that is consistent with studies done in transgenic animals. These findings may partly explain why ARBs users show reduced progression to dementia despite their lower educational attainment and greater vascular risk burden.
Collapse
|
10
|
Hamel E, Royea J, Ongali B, Tong XK. Neurovascular and Cognitive failure in Alzheimer's Disease: Benefits of Cardiovascular Therapy. Cell Mol Neurobiol 2016; 36:219-32. [PMID: 26993506 DOI: 10.1007/s10571-015-0285-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial and multifaceted disease for which we currently have very little to offer since there is no curative therapy, with only limited disease-modifying drugs. Recent studies in AD mouse models that recapitulate the amyloid-β (Aβ) pathology converge to demonstrate that it is possible to salvage cerebrovascular function with a variety of drugs and, particularly, therapies used to treat cardiovascular diseases such as hypercholesterolemia and hypertension. These drugs can reestablish dilatory function mediated by various endothelial and smooth muscle ion channels as well as nitric oxide availability, benefits that result in normalized brain perfusion. These cerebrovascular benefits would favor brain perfusion, which may help maintain neuronal function and, possibly, delay cognitive failure. However, restoring cerebrovascular function in AD mouse models was not necessarily accompanied by rescue of cognitive deficits related to spatial learning and memory. The results with cardiovascular therapies rather suggest that drugs originally designed to treat cardiovascular diseases that concurrently restore cerebrovascular and cognitive function do so through their pleiotropic effects. Specifically, recent findings suggest that these drugs act directly on brain cells and neuronal pathways involved in memory formation, hence, working simultaneously albeit independently on neuronal and vascular targets. These findings may help select medications for patients with cardiovascular diseases at risk of developing AD with increasing age. Further, they may identify molecular targets for recovering memory pathways that bear potential for new therapeutic avenues.
Collapse
Affiliation(s)
- Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada.
| | - Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada
| | - Brice Ongali
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada
| | - Xin-Kang Tong
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Suite 748, Montréal, QC, H3A 2B4, Canada
| |
Collapse
|
11
|
Kruyer A, Soplop N, Strickland S, Norris EH. Chronic Hypertension Leads to Neurodegeneration in the TgSwDI Mouse Model of Alzheimer's Disease. Hypertension 2015; 66:175-82. [PMID: 25941345 DOI: 10.1161/hypertensionaha.115.05524] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/10/2015] [Indexed: 02/06/2023]
Abstract
Numerous epidemiological studies link vascular disorders, such as hypertension, diabetes mellitus, and stroke, with Alzheimer's disease (AD). Hypertension, specifically, is an important modifiable risk factor for late-onset AD. To examine the link between midlife hypertension and the onset of AD later in life, we chemically induced chronic hypertension in the TgSwDI mouse model of AD in early adulthood. Hypertension accelerated cognitive deficits in the Barnes maze test (P<0.05 after 3 months of treatment; P<0.001 after 6 months), microvascular deposition of β-amyloid (P<0.001 after 3 months of treatment; P<0.05 after 6 months), vascular inflammation (P<0.05 in the dentate gyrus and P<0.001 in the dorsal subiculum after 6 months of treatment), blood-brain barrier leakage (P<0.05 after 3 and 6 months of treatment), and pericyte loss (P<0.05 in the dentate gyrus and P<0.01 in the dorsal subiculum after 6 months of treatment) in these mice. In addition, hypertension induced hippocampal neurodegeneration at an early age in this mouse line (43% reduction in the dorsal subiculum; P<0.05), establishing this as a useful research model of AD with mixed vascular and amyloid pathologies.
Collapse
Affiliation(s)
- Anna Kruyer
- From the Patricia and John Rosenwald Laboratory of Neurobiology and Genetics (A.K., S.S., E.H.N.), Electron Microscopy Resource Center (N.S.), The Rockefeller University, New York, NY
| | - Nadine Soplop
- From the Patricia and John Rosenwald Laboratory of Neurobiology and Genetics (A.K., S.S., E.H.N.), Electron Microscopy Resource Center (N.S.), The Rockefeller University, New York, NY
| | - Sidney Strickland
- From the Patricia and John Rosenwald Laboratory of Neurobiology and Genetics (A.K., S.S., E.H.N.), Electron Microscopy Resource Center (N.S.), The Rockefeller University, New York, NY
| | - Erin H Norris
- From the Patricia and John Rosenwald Laboratory of Neurobiology and Genetics (A.K., S.S., E.H.N.), Electron Microscopy Resource Center (N.S.), The Rockefeller University, New York, NY.
| |
Collapse
|
12
|
Ongali B, Nicolakakis N, Tong XK, Aboulkassim T, Papadopoulos P, Rosa-Neto P, Lecrux C, Imboden H, Hamel E. Angiotensin II type 1 receptor blocker losartan prevents and rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer's disease model. Neurobiol Dis 2014; 68:126-36. [PMID: 24807206 DOI: 10.1016/j.nbd.2014.04.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/17/2014] [Accepted: 04/27/2014] [Indexed: 11/18/2022] Open
Abstract
Angiotensin II (AngII) receptor blockers that bind selectively AngII type 1 (AT1) receptors may protect from Alzheimer's disease (AD). We studied the ability of the AT1 receptor antagonist losartan to cure or prevent AD hallmarks in aged (~18months at endpoint, 3months treatment) or adult (~12months at endpoint, 10months treatment) human amyloid precursor protein (APP) transgenic mice. We tested learning and memory with the Morris water maze, and evaluated neurometabolic and neurovascular coupling using [(18)F]fluoro-2-deoxy-D-glucose-PET and laser Doppler flowmetry responses to whisker stimulation. Cerebrovascular reactivity was assessed with on-line videomicroscopy. We measured protein levels of oxidative stress enzymes (superoxide dismutases SOD1, SOD2 and NADPH oxidase subunit p67phox), and quantified soluble and deposited amyloid-β (Aβ) peptide, glial fibrillary acidic protein (GFAP), AngII receptors AT1 and AT2, angiotensin IV receptor AT4, and cortical cholinergic innervation. In aged APP mice, losartan did not improve learning but it consolidated memory acquisition and recall, and rescued neurovascular and neurometabolic coupling and cerebrovascular dilatory capacity. Losartan normalized cerebrovascular p67phox and SOD2 protein levels and up-regulated those of SOD1. Losartan attenuated astrogliosis, normalized AT1 and AT4 receptor levels, but failed to rescue the cholinergic deficit and the Aβ pathology. Given preventively, losartan protected cognitive function, cerebrovascular reactivity, and AT4 receptor levels. Like in aged APP mice, these benefits occurred without a decrease in soluble Aβ species or plaque load. We conclude that losartan exerts potent preventive and restorative effects on AD hallmarks, possibly by mitigating AT1-initiated oxidative stress and normalizing memory-related AT4 receptors.
Collapse
Affiliation(s)
- Brice Ongali
- Laboratory of Cerebrovascular Research, McGill University, Montréal, QC H3A 2B4, Canada
| | - Nektaria Nicolakakis
- Laboratory of Cerebrovascular Research, McGill University, Montréal, QC H3A 2B4, Canada
| | - Xin-Kang Tong
- Laboratory of Cerebrovascular Research, McGill University, Montréal, QC H3A 2B4, Canada
| | - Tahar Aboulkassim
- Laboratory of Cerebrovascular Research, McGill University, Montréal, QC H3A 2B4, Canada
| | | | - Pedro Rosa-Neto
- Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada; Douglas Hospital Research Centre, McGill University, Montréal, QC H3A 2B4, Canada
| | - Clotilde Lecrux
- Laboratory of Cerebrovascular Research, McGill University, Montréal, QC H3A 2B4, Canada
| | - Hans Imboden
- Institute of Cell Biology, University of Bern, Switzerland
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, McGill University, Montréal, QC H3A 2B4, Canada.
| |
Collapse
|