1
|
Lin Z, Deng Z, Liu J, Lin Z, Chen S, Deng Z, Li W. Chloride Channel and Inflammation-Mediated Pathogenesis of Osteoarthritis. J Inflamm Res 2022; 15:953-964. [PMID: 35177922 PMCID: PMC8846625 DOI: 10.2147/jir.s350432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Articular cartilage allows the human body to buffer and absorb stress during normal exercise. It is mainly composed of cartilage cells and the extracellular matrix and is surrounded by the extracellular microenvironment formed by synovial fluid and various factors in it. Studies have shown that chondrocytes are the metabolic center of articular cartilage. Under physiological conditions, the extracellular matrix is in a dynamic balance of anabolism and catabolism, and various factors and physical and chemical conditions in the extracellular microenvironment are also in a steady state. This homeostasis depends on the normal function of proteins represented by various ion channels on chondrocytes. In mammalian chondrocyte species, ion channels are mainly divided into two categories: cation channels and anion channels. Anion channels such as chloride channels have become hot research topics in recent years. These channels play an extremely important role in various physiological processes. Recently, a growing body of evidence has shown that many pathological processes, abnormal concentration of mechanical stress and chloride channel dysfunction in articular cartilage lead to microenvironment disorders, matrix and bone metabolism imbalances, which cause partial aseptic inflammation. These pathological processes initiate extracellular matrix degradation, abnormal chondrocyte death, hyperplasia of inflammatory synovium and bony. Osteoarthritis (OA) is a common clinical disease in orthopedics. Its typical manifestations are joint inflammation and pain caused by articular cartilage degeneration, but its pathogenesis has not been fully elucidated. Focusing on the physiological functions and pathological changes of chloride channels and pathophysiology of aseptic inflammation furthers the understanding of OA pathogenesis and provides possible targets for subsequent medication development.
Collapse
Affiliation(s)
- Zicong Lin
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Jianquan Liu
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhongshi Lin
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), Shenzhen, Guangdong, 518057, People’s Republic of China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Correspondence: Zhenhan Deng, Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13928440786, Fax +86 755-83366388, Email
| | - Wencui Li
- Hand and Foot Surgery Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
- Wencui Li, Department of Hand and Foot Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518025, People’s Republic of China, Tel +86 13923750767, Email
| |
Collapse
|
2
|
Wilke BU, Kummer KK, Leitner MG, Kress M. Chloride - The Underrated Ion in Nociceptors. Front Neurosci 2020; 14:287. [PMID: 32322187 PMCID: PMC7158864 DOI: 10.3389/fnins.2020.00287] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/12/2020] [Indexed: 01/06/2023] Open
Abstract
In contrast to pain processing neurons in the spinal cord, where the importance of chloride conductances is already well established, chloride homeostasis in primary afferent neurons has received less attention. Sensory neurons maintain high intracellular chloride concentrations through balanced activity of Na+-K+-2Cl– cotransporter 1 (NKCC1) and K+-Cl– cotransporter 2 (KCC2). Whereas in other cell types activation of chloride conductances causes hyperpolarization, activation of the same conductances in primary afferent neurons may lead to inhibitory or excitatory depolarization depending on the actual chloride reversal potential and the total amount of chloride efflux during channel or transporter activation. Dorsal root ganglion (DRG) neurons express a multitude of chloride channel types belonging to different channel families, such as ligand-gated, ionotropic γ-aminobutyric acid (GABA) or glycine receptors, Ca2+-activated chloride channels of the anoctamin/TMEM16, bestrophin or tweety-homolog family, CLC chloride channels and transporters, cystic fibrosis transmembrane conductance regulator (CFTR) as well as volume-regulated anion channels (VRACs). Specific chloride conductances are involved in signal transduction and amplification at the peripheral nerve terminal, contribute to excitability and action potential generation of sensory neurons, or crucially shape synaptic transmission in the spinal dorsal horn. In addition, chloride channels can be modified by a plethora of inflammatory mediators affecting them directly, via protein-protein interaction, or through signaling cascades. Since chloride channels as well as mediators that modulate chloride fluxes are regulated in pain disorders and contribute to nociceptor excitation and sensitization it is timely and important to emphasize their critical role in nociceptive primary afferents in this review.
Collapse
Affiliation(s)
- Bettina U Wilke
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai K Kummer
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael G Leitner
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Ludwig MG, Seuwen K, Bridges JP. Adhesion GPCR Function in Pulmonary Development and Disease. Handb Exp Pharmacol 2016; 234:309-327. [PMID: 27832494 DOI: 10.1007/978-3-319-41523-9_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Classic G-protein-coupled receptors (GPCRs) control multiple aspects of pulmonary physiology as demonstrated by loss-of-function experiments in mice and pharmacologic targeting of GPCRs for treatment of several pulmonary diseases. Emerging data demonstrate critical roles for members of the adhesion GPCR (aGPCR) family in pulmonary development, homeostasis, and disease. Although this field is still in its infancy, this chapter will review all available data regarding aGPCRs in pulmonary biology, with a particular focus on the aGPCR for which the most substantial data to date exist: Adgrf5.
Collapse
Affiliation(s)
| | - Klaus Seuwen
- Novartis Institutes for Biomedical Research, Basel, 4056, Switzerland
| | - James P Bridges
- Department of Pediatrics, Section of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML7029, Cincinnati, OH, 45229, USA.
| |
Collapse
|