1
|
Higarza SG, Arboleya S, Arias JL, Gueimonde M, Arias N. Akkermansia muciniphila and environmental enrichment reverse cognitive impairment associated with high-fat high-cholesterol consumption in rats. Gut Microbes 2022; 13:1-20. [PMID: 33678110 PMCID: PMC7946069 DOI: 10.1080/19490976.2021.1880240] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is one of the most prevalent diseases globally. A high-fat, high-cholesterol (HFHC) diet leads to an early NASH model. It has been suggested that gut microbiota mediates the effects of diet through the microbiota-gut-brain axis, modifying the host's brain metabolism and disrupting cognition. Here, we target NASH-induced cognitive damage by testing the impact of environmental enrichment (EE) and the administration of either Lacticaseibacillus rhamnosus GG (LGG) or Akkermansia muciniphila CIP107961 (AKK). EE and AKK, but not LGG, reverse the HFHC-induced cognitive dysfunction, including impaired spatial working memory and novel object recognition; however, whereas AKK restores brain metabolism, EE results in an overall decrease. Moreover, AKK and LGG did not induce major rearrangements in the intestinal microbiota, with only slight changes in bacterial composition and diversity, whereas EE led to an increase in Firmicutes and Verrucomicrobia members. Our findings illustrate the interplay between gut microbiota, the host's brain energy metabolism, and cognition. In addition, the findings suggest intervention strategies, such as the administration of AKK, for the management of the cognitive dysfunction related to NASH.
Collapse
Affiliation(s)
- Sara G. Higarza
- Laboratory of Neuroscience, Department of Psychology. University of Oviedo, Oviedo, Asturias, Spain,Instituto De Neurociencias Del Principado De Asturias (INEUROPA), Asturias, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto De Productos Lácteos De Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Jorge L. Arias
- Laboratory of Neuroscience, Department of Psychology. University of Oviedo, Oviedo, Asturias, Spain,Instituto De Neurociencias Del Principado De Asturias (INEUROPA), Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto De Productos Lácteos De Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain,Miguel Gueimonde Department of Microbiology and Biochemistry of Dairy Products, Instituto De Productos Lácteos De Asturias (IPLA-CSIC), Villaviciosa, Asturias 33300, Spain
| | - Natalia Arias
- Instituto De Neurociencias Del Principado De Asturias (INEUROPA), Asturias, Spain,UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,CONTACT Natalia Arias Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, LondonSE5 8AF, United Kingdom
| |
Collapse
|
2
|
Johnson SA, Javurek AB, Painter MS, Ellersieck MR, Welsh TH, Camacho L, Lewis SM, Vanlandingham MM, Ferguson SA, Rosenfeld CS. Effects of developmental exposure to bisphenol A on spatial navigational learning and memory in rats: A CLARITY-BPA study. Horm Behav 2016; 80:139-148. [PMID: 26436835 PMCID: PMC4818668 DOI: 10.1016/j.yhbeh.2015.09.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/22/2015] [Accepted: 09/30/2015] [Indexed: 11/23/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous industrial chemical used in the production of a wide variety of items. Previous studies suggest BPA exposure may result in neuro-disruptive effects; however, data are inconsistent across animal and human studies. As part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA), we sought to determine whether female and male rats developmentally exposed to BPA demonstrated later spatial navigational learning and memory deficits. Pregnant NCTR Sprague-Dawley rats were orally dosed from gestational day 6 to parturition, and offspring were directly orally dosed until weaning (postnatal day 21). Treatment groups included a vehicle control, three BPA doses (2.5μg/kg body weight (bw)/day-[2.5], 25μg/kg bw/day-[25], and 2500μg/kg bw/day-[2500]) and a 0.5μg/kg/day ethinyl estradiol (EE)-reference estrogen dose. At adulthood, 1/sex/litter was tested for seven days in the Barnes maze. The 2500 BPA group sniffed more incorrect holes on day 7 than those in the control, 2.5 BPA, and EE groups. The 2500 BPA females were less likely than control females to locate the escape box in the allotted time (p value=0.04). Although 2.5 BPA females exhibited a prolonged latency, the effect did not reach significance (p value=0.06), whereas 2.5 BPA males showed improved latency compared to control males (p value=0.04), although the significance of this result is uncertain. No differences in serum testosterone concentration were detected in any male or female treatment groups. Current findings suggest developmental exposure of rats to BPA may disrupt aspects of spatial navigational learning and memory.
Collapse
Affiliation(s)
- Sarah A Johnson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States; Biomedical Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Angela B Javurek
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States; Biomedical Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Michele S Painter
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States; Biomedical Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Mark R Ellersieck
- Agriculture Experimental Station-Statistics, University of Missouri, Columbia, MO 65211, United States
| | - Thomas H Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, United States
| | - Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR 72079, United States
| | - Sherry M Lewis
- Office of Scientific Coordination, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR 72079, United States
| | - Michelle M Vanlandingham
- Division of Biochemical Toxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR 72079, United States
| | - Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR 72079, United States
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States; Biomedical Sciences, University of Missouri, Columbia, MO 65211, United States; Genetics Area Program, University of Missouri, Columbia, MO 65211, United States; Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
3
|
Arias N, Méndez M, Vallejo G, Arias JL. Finding the place without the whole: Timeline involvement of brain regions. Brain Res 2015; 1625:18-28. [PMID: 26319692 DOI: 10.1016/j.brainres.2015.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/04/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Abstract
Mastering the Morris water maze (MWM) requires the animal to consolidate, retain and retrieve spatial localizations of relevant visual cues. However, it is necessary to investigate whether a reorganization of the neural networks takes place when part of the spatial information is removed. We conducted four experiments using the MWM. A classical reference memory procedure was performed over five training days, RM5 (n=7), and eight days, RM8 (n=7), with the whole room and all the spatial cues presented. Another group of animals were trained in the same protocol, but they received an additional day of training with only partial cues, PC (n=8). Finally, a third group of animals performed the classical task, followed by an overtraining with partial cues for four more days, OPC (n=8). After completing these tasks, cytochrome c-oxidase activity (CO) in several brain limbic system structures was compared between groups. In addition, c-Fos positive cells were measured in the RM5, RM8, PC and OPC groups. No significant differences were found among the four groups in escape latencies or time spent in the target quadrant. CO revealed involvement of the prefrontal and parietal cortices, dorsal and ventral striatum, CA1 and CA3 subfields of the dorsal hippocampus, basolateral and lateral amygdala, and mammillary nuclei in the PC group, compared to the RM group. In the OPC group, involvement of the ventral striatum and anteroventral thalamus and the absence of amygdala involvement were revealed, compared to the PC group. C-Fos results highlighted the role of the prefrontal cortex, dorsal striatum, anterodorsal thalamus and CA3 in the PC group, compared to the OPC, RM5 and RM8 groups. The animals were able to find the escape platform even when only a portion of the space where the cues were placed was available. Although the groups did not differ behaviorally, energetic brain metabolism and immediate early gene expression revealed the engagement of different neural structures in the groups that received more training without the entire surrounding space.
Collapse
Affiliation(s)
- Natalia Arias
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Spain.
| | - Marta Méndez
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Spain
| | - Guillermo Vallejo
- Laboratorio de Metodología, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain
| | - Jorge L Arias
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Spain
| |
Collapse
|