1
|
Zhang WJ, Zhu ZM, Liu ZX. The role of P2X4 receptor in neuropathic pain and its pharmacological properties. Pharmacol Res 2020; 158:104875. [PMID: 32407956 DOI: 10.1016/j.phrs.2020.104875] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/02/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022]
Abstract
Neuropathic pain (NPP) is a common symptom of most diseases in clinic, which seriously affects the mental health of patients and brings certain pain to patients. Due to its pathological mechanism is very complicated, and thus, its treatment has been one of the challenges in the field of medicine. Therefore, exploring the pathogenesis and treatment approach of NPP has aroused the interest of many researchers. ATP is an important energy information substance, which participates in the signal transmission in the body. The P2 × 4 receptor (P2 × 4R) is dependent on ATP ligand-gated cationic channel receptor, which can be activated by ATP and plays an important role in the transmission of information in the nervous system and the formation of pain. In this paper, we provide a comprehensive review of the structure and function of the P2 × 4R gene. We also discuss the pathogenesis of NPP and the intrinsic relationship between P2 × 4R and NPP. Moreover, we explore the pharmacological properties of P2 × 4R antagonists or inhibitors used as targeted therapies for NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Zheng-Ming Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Zeng-Xu Liu
- Basic Medicine, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| |
Collapse
|
2
|
Wang J, Sun LF, Cui WW, Zhao WS, Ma XF, Li B, Liu Y, Yang Y, Hu YM, Huang LD, Cheng XY, Li L, Lu XY, Tian Y, Yu Y. Intersubunit physical couplings fostered by the left flipper domain facilitate channel opening of P2X4 receptors. J Biol Chem 2017; 292:7619-7635. [PMID: 28302727 DOI: 10.1074/jbc.m116.771121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
P2X receptors are ATP-gated trimeric channels with important roles in diverse pathophysiological functions. A detailed understanding of the mechanism underlying the gating process of these receptors is thus fundamentally important and may open new therapeutic avenues. The left flipper (LF) domain of the P2X receptors is a flexible loop structure, and its coordinated motions together with the dorsal fin (DF) domain are crucial for the channel gating of the P2X receptors. However, the mechanism underlying the crucial role of the LF domain in the channel gating remains obscure. Here, we propose that the ATP-induced allosteric changes of the LF domain enable it to foster intersubunit physical couplings among the DF and two lower body domains, which are pivotal for the channel gating of P2X4 receptors. Metadynamics analysis indicated that these newly established intersubunit couplings correlate well with the ATP-bound open state of the receptors. Moreover, weakening or strengthening these physical interactions with engineered intersubunit metal bridges remarkably decreased or increased the open probability of the receptors, respectively. Further disulfide cross-linking and covalent modification confirmed that the intersubunit physical couplings among the DF and two lower body domains fostered by the LF domain at the open state act as an integrated structural element that is stringently required for the channel gating of P2X4 receptors. Our observations provide new mechanistic insights into P2X receptor activation and will stimulate development of new allosteric modulators of P2X receptors.
Collapse
Affiliation(s)
- Jin Wang
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liang-Fei Sun
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Wen Cui
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Shan Zhao
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xue-Fei Ma
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China, and
| | - Bin Li
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China, and
| | - Yan Liu
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Yang
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - You-Min Hu
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li-Dong Huang
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Yang Cheng
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingyong Li
- the Department of Anesthesiology and Perioperative Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Xiang-Yang Lu
- the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China, and
| | - Yun Tian
- the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China, and
| | - Ye Yu
- From the Department of Pharmacology and Chemical Biology, Institute of Medical Sciences and Hongqiao International Institute of Medicine of Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China, .,the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China, and
| |
Collapse
|
3
|
Zhao WS, Sun MY, Sun LF, Liu Y, Yang Y, Huang LD, Fan YZ, Cheng XY, Cao P, Hu YM, Li L, Tian Y, Wang R, Yu Y. A Highly Conserved Salt Bridge Stabilizes the Kinked Conformation of β2,3-Sheet Essential for Channel Function of P2X4 Receptors. J Biol Chem 2016; 291:7990-8003. [PMID: 26865631 DOI: 10.1074/jbc.m115.711127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 01/01/2023] Open
Abstract
Significant progress has been made in understanding the roles of crucial residues/motifs in the channel function of P2X receptors during the pre-structure era. The recent structural determination of P2X receptors allows us to reevaluate the role of those residues/motifs. Residues Arg-309 and Asp-85 (rat P2X4 numbering) are highly conserved throughout the P2X family and were involved in loss-of-function polymorphism in human P2X receptors. Previous studies proposed that they participated in direct ATP binding. However, the crystal structure of P2X demonstrated that those two residues form an intersubunit salt bridge located far away from the ATP-binding site. Therefore, it is necessary to reevaluate the role of this salt bridge in P2X receptors. Here, we suggest the crucial role of this structural element both in protein stability and in channel gating rather than direct ATP interaction and channel assembly. Combining mutagenesis, charge swap, and disulfide cross-linking, we revealed the stringent requirement of this salt bridge in normal P2X4 channel function. This salt bridge may contribute to stabilizing the bending conformation of the β2,3-sheet that is structurally coupled with this salt bridge and the α2-helix. Strongly kinked β2,3 is essential for domain-domain interactions between head domain, dorsal fin domain, right flipper domain, and loop β7,8 in P2X4 receptors. Disulfide cross-linking with directions opposing or along the bending angle of the β2,3-sheet toward the α2-helix led to loss-of-function and gain-of-function of P2X4 receptors, respectively. Further insertion of amino acids with bulky side chains into the linker between the β2,3-sheet or the conformational change of the α2-helix, interfering with the kinked conformation of β2,3, led to loss-of-function of P2X4 receptors. All these findings provided new insights in understanding the contribution of the salt bridge between Asp-85 and Arg-309 and its structurally coupled β2,3-sheet to the function of P2X receptors.
Collapse
Affiliation(s)
- Wen-Shan Zhao
- From the School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China, the Institute of Medical Sciences and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Meng-Yang Sun
- From the School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China, the Institute of Medical Sciences and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liang-Fei Sun
- the Institute of Medical Sciences and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Liu
- the Institute of Medical Sciences and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Yang
- the Institute of Medical Sciences and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li-Dong Huang
- the Institute of Medical Sciences and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying-Zhe Fan
- the Putuo District Center Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai 200062, China
| | - Xiao-Yang Cheng
- the Institute of Medical Sciences and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Peng Cao
- the Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China, and the Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - You-Min Hu
- the Institute of Medical Sciences and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingyong Li
- the Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Yun Tian
- the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rui Wang
- From the School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China,
| | - Ye Yu
- the Institute of Medical Sciences and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China, the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China,
| |
Collapse
|
4
|
Insights into the channel gating of P2X receptors from structures, dynamics and small molecules. Acta Pharmacol Sin 2016; 37:44-55. [PMID: 26725734 DOI: 10.1038/aps.2015.127] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/02/2015] [Indexed: 12/16/2022] Open
Abstract
P2X receptors, as ATP-gated non-selective trimeric ion channels, are permeable to Na(+), K(+) and Ca(2+). Comparing with other ligand-gated ion channel families, P2X receptors are distinct in their unique gating properties and pathophysiological roles, and have attracted attention as promising drug targets for a variety of diseases, such as neuropathic pain, multiple sclerosis, rheumatoid arthritis and thrombus. Several small molecule inhibitors for distinct P2X subtypes have entered into clinical trials. However, many questions regarding the gating mechanism of P2X remain unsolved. The structural determinations of P2X receptors at the resting and ATP-bound open states revealed that P2X receptor gating is a cooperative allosteric process involving multiple domains, which marks the beginning of the post-structure era of P2X research at atomic level. Here, we review the current knowledge on the structure-function relationship of P2X receptors, depict the whole picture of allosteric changes during the channel gating, and summarize the active sites that may contribute to new strategies for developing novel allosteric drugs targeting P2X receptors.
Collapse
|