1
|
Topley M, Sparks P, Crotty A, Kawaja M, Hendry JM. The epidermal growth factor receptor inhibitor gefitinib enhances in vitro and in vivo sensory axon regeneration and functional recovery following transection in a mouse median nerve injury model. Muscle Nerve 2025; 71:113-123. [PMID: 39529451 PMCID: PMC11632577 DOI: 10.1002/mus.28291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION The epidermal growth factor receptor (EGFR; ErbB1), a membrane bound receptor tyrosine kinase, is hypothesized to have an inhibitory influence on peripheral nerve regeneration. This study examines the impact of EGFR inhibition on nerve regeneration using the commercially available small molecule inhibitor gefitinib. METHOD In vitro assays included neurite outgrowth of cultured dorsal root ganglion (DRG) neurons from adult C57Bl/6 wildtype mice on immobilized chondroitin sulfate proteoglycans (CSPG). Following forelimb median nerve injury, EGFR expression, number of regenerated neurons (using retrograde labeling) and myelination of motor and sensory neurons were compared between mice that received either gefitinib or vehicle. Functional recovery was assessed using grip strength. RESULTS EGFR expression on DRG and spinal motor neurons was confirmed. Gefitinib significantly increased neurite outgrowth in medium sized (30-50 μm) DRG neurons, resulting in longer neurites (183 ± 36 μm) compared with CSPG alone (49 ± 9 μm). After median nerve injury, significantly greater numbers of sensory neurons (638 ± 112 vs. 301 ± 81), but not motor neurons (31 ± 12 vs. 42 ± 13) regenerated in animals treated with gefitinib compared with controls. Regenerated axons in gefitinib treated animals displayed significantly greater diameter and increased g-ratio compared with controls. Grip strength recovered more quickly in animals receiving gefitinib compared with controls (27.6 vs. 19.1 g 18 days post-injury). DISCUSSION This study provides data supporting the role of EGFR as a negative regulator of sensory but not motor neuron regeneration. Further, it demonstrates versatile potential uses of existing pharmaceuticals.
Collapse
Affiliation(s)
- Maxwell Topley
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
| | - Payton Sparks
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Marian University College of Osteopathic MedicineIndianapolisIndianaUSA
| | - Anne‐Marie Crotty
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
| | - Michael Kawaja
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - J. Michael Hendry
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
- Kingston Health Sciences CenterKingstonOntarioCanada
| |
Collapse
|
2
|
Hoffman DB, Basten AM, Sorensen JR, Raymond-Pope CJ, Lillquist TJ, Call JA, Corona BT, Greising SM. Response of terminal Schwann cells following volumetric muscle loss injury. Exp Neurol 2023; 365:114431. [PMID: 37142114 PMCID: PMC10227691 DOI: 10.1016/j.expneurol.2023.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
An often-overlooked component of traumatic skeletal muscle injuries is the impact on the nervous system and resultant innervation of the affected muscles. Recent work in a rodent model of volumetric muscle loss (VML) injury demonstrated a progressive, secondary loss of neuromuscular junction (NMJ) innervation, supporting a role of NMJ dysregulation in chronic functional deficits. Terminal Schwann cells (tSCs) are known to be vital for the maintenance of NMJ structure and function, in addition to guiding repair and regeneration after injury. However, the tSC response to a traumatic muscle injury such as VML is not known. Thus, a study was conducted to investigate the effect of VML on tSC morphological characteristics and neurotrophic signaling proteins in adult male Lewis rats that underwent VML injury to the tibialis anterior muscle using a temporal design with outcome assessments at 3, 7, 14, 21, and 48 days post-injury. The following salient observations were made; first, although there is a loss of innervation over time, the number of tSCs per NMJ increases, significantly so at 48 days post-injury compared to control. The degree of NMJ fragmentation was positively correlated with tSC number after injury. Moreover, neurotrophic factors such as NRG1 and BDNF are elevated after injury through at least 48 days. These results were unanticipated and in contrast to neurodegenerative disease models, in which there is a reduction in tSC number that precedes denervation. However, we found that while there are more tSCs per NMJ after injury, they cover a significantly smaller percent of the post-synaptic endplate area compared to control. These findings support a sustained increase in neurotrophic activity and tSC number after VML, which is a maladaptive response occurring in parallel to other aspects of the VML injury, such as over-accumulation of collagen and aberrant inflammatory signaling.
Collapse
Affiliation(s)
- Daniel B Hoffman
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Alec M Basten
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jacob R Sorensen
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | - Thomas J Lillquist
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jarrod A Call
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States of America
| | - Benjamin T Corona
- School of Medicine, Wake Forest University, Winston-Salem, NC 27101, United States of America
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
3
|
Li L, Du X, Ling H, Li Y, Wu X, Jin A, Yang M. Gene correlation network analysis to identify regulatory factors in sciatic nerve injury. J Orthop Surg Res 2021; 16:622. [PMID: 34663380 PMCID: PMC8522103 DOI: 10.1186/s13018-021-02756-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sciatic nerve injury (SNI), which frequently occurs under the traumatic hip and hip fracture dislocation, induces serious complications such as motor and sensory loss, muscle atrophy, or even disabling. The present work aimed to determine the regulating factors and gene network related to the SNI pathology. METHODS Sciatic nerve injury dataset GSE18803 with 24 samples was divided into adult group and neonate group. Weighted gene co-expression network analysis (WGCNA) was carried out to identify modules associated with SNI in the two groups. Moreover, differentially expressed genes (DEGs) were determined from every group, separately. Subsequently, co-expression network and protein-protein interaction (PPI) network were overlapped to identify hub genes, while functional enrichment and Reactome analysis were used for a comprehensive analysis of potential pathways. GSE30165 was used as the test set for investigating the hub gene involvement within SNI. Gene set enrichment analysis (GSEA) was performed separately using difference between samples and gene expression level as phenotype label to further prove SNI-related signaling pathways. In addition, immune infiltration analysis was accomplished by CIBERSORT. Finally, Drug-Gene Interaction database (DGIdb) was employed for predicting the possible therapeutic agents. RESULTS 14 SNI status modules and 97 DEGs were identified in adult group, while 15 modules and 21 DEGs in neonate group. A total of 12 hub genes was overlapping from co-expression and PPI network. After the results from both test and training sets were overlapped, we verified that the ten real hub genes showed remarkably up-regulation within SNI. According to functional enrichment of hub genes, the above genes participated in the immune effector process, inflammatory responses, the antigen processing and presentation, and the phagocytosis. GSEA also supported that gene sets with the highest significance were mostly related to the cytokine-cytokine receptor interaction. Analysis of hub genes possible related signaling pathways using gene expression level as phenotype label revealed an enrichment involved in Lysosome, Chemokine signaling pathway, and Neurotrophin signaling pathway. Immune infiltration analysis showed that Macrophages M2 and Regulatory T cells may participate in the development of SNI. At last, 25 drugs were screened from DGIdb to improve SNI treatment. CONCLUSIONS The gene expression network is determined in the present work based on the related regulating factors within SNI, which sheds more light on SNI pathology and offers the possible biomarkers and therapeutic targets in subsequent research.
Collapse
Affiliation(s)
- Liuxun Li
- Department of Spine Surgery, the First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Xiaokang Du
- Department of Spine Surgery, the First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Haiqian Ling
- Department of Spine Surgery, the First Affiliated Hospital, Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yuhang Li
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuemin Wu
- Department of Endocrinology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong, China
| | - Anmin Jin
- Department of Spine Surgery, ZhuJiang Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiling Yang
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518034, Guangdong, China.
| |
Collapse
|
4
|
Charcot-Marie-Tooth Type 2B: A New Phenotype Associated with a Novel RAB7A Mutation and Inhibited EGFR Degradation. Cells 2020; 9:cells9041028. [PMID: 32326241 PMCID: PMC7226405 DOI: 10.3390/cells9041028] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023] Open
Abstract
The rare autosomal dominant Charcot-Marie-Tooth type 2B (CMT2B) is associated with mutations in the RAB7A gene, involved in the late endocytic pathway. CMT2B is characterized by predominant sensory loss, ulceromutilating features, with lesser-to-absent motor deficits. We characterized clinically and genetically a family harboring a novel pathogenic RAB7A variant and performed structural and functional analysis of the mutant protein. A 39-year-old woman presented with early-onset walking difficulties, progressive distal muscle wasting and weakness in lower limbs and only mild sensory signs. Electrophysiology demonstrated an axonal sensorimotor neuropathy. Nerve biopsy showed a chronic axonal neuropathy with moderate loss of all caliber myelinated fibers. Next-generation sequencing (NGS) technology revealed in the proband and in her similarly affected father the novel c.377A>G (p.K126R) heterozygous variant predicted to be deleterious. The mutation affects the biochemical properties of RAB7 GTPase, causes altered interaction with peripherin, and inhibition of neurite outgrowth, as for previously reported CMT2B mutants. However, it also shows differences, particularly in the epidermal growth factor receptor degradation process. Altogether, our findings indicate that this RAB7A variant is pathogenic and widens the phenotypic spectrum of CMT2B to include predominantly motor CMT2. Alteration of the receptor degradation process might explain the different clinical presentations in this family.
Collapse
|
5
|
Abstract
Currently, there are no established adjuvant drugs for the acceleration of peripheral nerve regeneration. In this paper, we reviewed the literature from the last 10 years and described the drugs proved to accelerate the functional and histological regeneration of the peripheral nerves, either after trauma or in neuropathy experimental models. The vast majority of the studies were experimental with very few small clinical studies, which indicates the need for prospective randomized studies to identify the best drugs to use as adjuvants for nerve regeneration.
Collapse
Affiliation(s)
- Olimpiu Bota
- Department of Plastic and Hand Surgery, University Center of Orthopedics and Trauma Surgery, University Hospital Carl Gustav Carus , Dresden , Germany
| | - Lucian Fodor
- Department of Plastic Surgery, First Surgical Clinic, Emergency District Hospital , Cluj-Napoca , Romania
| |
Collapse
|
6
|
Fornasari BE, Ronchi G, Pascal D, Visigalli D, Capodivento G, Nobbio L, Perroteau I, Schenone A, Geuna S, Gambarotta G. Soluble Neuregulin1 is strongly up-regulated in the rat model of Charcot-Marie-Tooth 1A disease. Exp Biol Med (Maywood) 2018; 243:370-374. [PMID: 29350067 DOI: 10.1177/1535370218754492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuregulin1 (NRG1) is a growth factor playing a pivotal role in peripheral nerve development through the activation of the transmembrane co-receptors ErbB2-ErbB3. Soluble NRG1 isoforms, mainly secreted by Schwann cells, are strongly and transiently up-regulated after acute peripheral nerve injury, thus suggesting that they play a crucial role also in the response to nerve damage. Here we show that in the rat experimental model of the peripheral demyelinating neuropathy Charcot-Marie-Tooth 1A (CMT1A) the expression of the different NRG1 isoforms (soluble, type α and β, type a and b) is strongly up-regulated, as well as the expression of NRG1 co-receptors ErbB2-ErbB3, thus showing that CMT1A nerves have a gene expression pattern highly reminiscent of injured nerves. Because it has been shown that high concentrations of soluble NRG1 negatively affect myelination, we suggest that soluble NRG1 over-expression might play a negative role in the pathogenesis of CMT1A disease, and that a therapeutic approach, aimed to interfere with NRG1 activity, might be beneficial for CMT1A patients. Further studies will be necessary to test this hypothesis in animal models and to evaluate NRG1 expression in human patients. Impact statement Charcot-Marie-Tooth1A (CMT1A) is one of the most frequent inherited neurological diseases, characterized by chronic demyelination of peripheral nerves, for which effective therapies are not yet available. It has been recently proposed that the treatment with soluble Neuregulin1 (NRG1), a growth factor released by Schwann cells immediately after acute nerve injury, might be effective in CMT1A treatment. However, the expression of the different isoforms of endogenous NRG1 in CMT1A nerves has not been yet investigated. In this preliminary study, we demonstrate that different isoforms of soluble NRG1 are strongly over-expressed in CMT1A nerves, thus suggesting that a therapeutic approach based on NRG1 treatment should be carefully reconsidered. If soluble NRG1 is over-expressed also in human CMT1A nerves, a therapeutic approach aimed to inhibit (instead of stimulate) the signal transduction pathways driven by NRG1 might be fruitfully developed. Further studies will be necessary to test these hypotheses.
Collapse
Affiliation(s)
- Benedetta Elena Fornasari
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy.,2 Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Torino 10043, Italy
| | - Giulia Ronchi
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy.,2 Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Torino 10043, Italy
| | - Davide Pascal
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy.,3 Candiolo Cancer Institute-FPO, IRCCS, Candiolo (TO) 10060, Italy
| | - Davide Visigalli
- 4 Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR, University of Genova, Genoa 16132, Italy
| | - Giovanna Capodivento
- 4 Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR, University of Genova, Genoa 16132, Italy
| | - Lucilla Nobbio
- 4 Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR, University of Genova, Genoa 16132, Italy
| | - Isabelle Perroteau
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy
| | - Angelo Schenone
- 4 Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR, University of Genova, Genoa 16132, Italy
| | - Stefano Geuna
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy.,2 Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Torino 10043, Italy
| | - Giovanna Gambarotta
- 1 Department of Clinical and Biological Sciences, University of Torino, Torino 10043, Italy
| |
Collapse
|
7
|
Postinjury Induction of Activated ErbB2 Selectively Hyperactivates Denervated Schwann Cells and Promotes Robust Dorsal Root Axon Regeneration. J Neurosci 2017; 37:10955-10970. [PMID: 28982707 DOI: 10.1523/jneurosci.0903-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 11/21/2022] Open
Abstract
Following nerve injury, denervated Schwann cells (SCs) convert to repair SCs, which enable regeneration of peripheral axons. However, the repair capacity of SCs and the regenerative capacity of peripheral axons are limited. In the present studies we examined a potential therapeutic strategy to enhance the repair capacity of SCs, and tested its efficacy in enhancing regeneration of dorsal root (DR) axons, whose regenerative capacity is particularly weak. We used male and female mice of a doxycycline-inducible transgenic line to induce expression of constitutively active ErbB2 (caErbB2) selectively in SCs after DR crush or transection. Two weeks after injury, injured DRs of induced animals contained far more SCs and SC processes. These SCs had not redifferentiated and continued to proliferate. Injured DRs of induced animals also contained far more axons that regrew along SC processes past the transection or crush site. Remarkably, SCs and axons in uninjured DRs remained quiescent, indicating that caErbB2 enhanced regeneration of injured DRs, without aberrantly activating SCs and axons in intact nerves. We also found that intraspinally expressed glial cell line-derived neurotrophic factor (GDNF), but not the removal of chondroitin sulfate proteoglycans, greatly enhanced the intraspinal migration of caErbB2-expressing SCs, enabling robust penetration of DR axons into the spinal cord. These findings indicate that SC-selective, post-injury activation of ErbB2 provides a novel strategy to powerfully enhance the repair capacity of SCs and axon regeneration, without substantial off-target damage. They also highlight that promoting directed migration of caErbB2-expressing SCs by GDNF might be useful to enable axon regrowth in a non-permissive environment.SIGNIFICANCE STATEMENT Repair of injured peripheral nerves remains a critical clinical problem. We currently lack a therapy that potently enhances axon regeneration in patients with traumatic nerve injury. It is extremely challenging to substantially increase the regenerative capacity of damaged nerves without deleterious off-target effects. It was therefore of great interest to discover that caErbB2 markedly enhances regeneration of damaged dorsal roots, while evoking little change in intact roots. To our knowledge, these findings are the first demonstration that repair capacity of denervated SCs can be efficaciously enhanced without altering innervated SCs. Our study also demonstrates that oncogenic ErbB2 signaling can be activated in SCs but not impede transdifferentiation of denervated SCs to regeneration-promoting repair SCs.
Collapse
|
8
|
Hendry JM, Alvarez-Veronesi MC, Placheta E, Zhang JJ, Gordon T, Borschel GH. ErbB2 blockade with Herceptin (trastuzumab) enhances peripheral nerve regeneration after repair of acute or chronic peripheral nerve injury. Ann Neurol 2016; 80:112-26. [PMID: 27159537 DOI: 10.1002/ana.24688] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/11/2016] [Accepted: 05/01/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Attenuation of the growth supportive environment within the distal nerve stump after delayed peripheral nerve repair profoundly limits nerve regeneration. Levels of the potent Schwann cell mitogen neuregulin and its receptor ErbB2 decline during this period, but the regenerative impact of this change is not completely understood. Herein, the ErbB2 receptor pathway is inhibited with the selective monoclonal antibody Herceptin (trastuzumab) to determine its significance in regulating acute and chronic regeneration in a rat hindlimb. METHODS The common peroneal nerve of Sprague-Dawley rats was transected and repaired immediately or after 4 months of chronic denervation, followed by administration of Herceptin or saline solution. Regenerated motor and sensory neurons were counted using a retrograde tracer 1, 2, or 4, weeks after repair. Distal myelinated axon outgrowth after 4 weeks was quantified using histomorphometry. Immunofluorescent imaging was used to evaluate Schwann cell proliferation and epidermal growth factor receptor (EGFR) activation in the regenerating nerves. RESULTS Herceptin administration increased the rate of motor and sensory neuron regeneration and the number of proliferating Schwann cells in the distal stump after the first week. Herceptin also increased the number of myelinated axons that regenerated 4 weeks after immediate and delayed repair. Reduced EGFR activation was observed using immunofluorescent imaging. INTERPRETATION Inhibition of the ErbB2 receptor with Herceptin unexpectedly enhances nerve regeneration after acute and delayed nerve repair. This finding raises the possibility of using targeted molecular therapies to improve outcomes of peripheral nerve injuries. The mechanism may involve a novel inhibitory association between ErbB2 and EGFR. Ann Neurol 2016;80:112-126.
Collapse
Affiliation(s)
- J Michael Hendry
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - M Cecilia Alvarez-Veronesi
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Eva Placheta
- Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Jennifer J Zhang
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tessa Gordon
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory H Borschel
- Division of Plastic and Reconstructive Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Wootla B, Denic A, Warrington AE, Rodriguez M. A monoclonal natural human IgM protects axons in the absence of remyelination. J Neuroinflammation 2016; 13:94. [PMID: 27126523 PMCID: PMC4850699 DOI: 10.1186/s12974-016-0561-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/24/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Whereas demyelination underlies early neurological symptoms in multiple sclerosis (MS), axonal damage is considered critical for permanent chronic deficits. Intracerebral infection of susceptible mouse strains with Theiler's murine encephalomyelitis virus (TMEV) results in chronic induced demyelinating disease (TMEV-IDD) with progressive axonal loss and neurologic dysfunction similar to progressive forms of MS. We previously reported that treatment of chronic TMEV-IDD mice with a neurite outgrowth-promoting natural human antibody, HIgM12, improved brainstem NAA concentrations and preserved functional motor activity. In order to translate this antibody toward clinical trial, we generated a fully human recombinant form of HIgM12, rHIgM12, determined the optimal in vivo dose for functional improvement in TMEV-IDD, and evaluated the functional preservation of descending spinal cord axons by retrograde labeling. FINDINGS SJL/J mice at 45 to 90 days post infection (dpi) were studied. A single intraperitoneal dose of 0.25 mg/kg of rHIgM12 per mouse is sufficient to preserve motor function in TMEV-IDD. The optimal dose was 10 mg/kg. rHIgM12 treatment protected the functional transport in spinal cord axons and led to 40 % more Fluoro-Gold-labeled brainstem neurons in retrograde transport studies. This suggests that axons are not only present but also functionally competent. rHIgM12-treated mice also contained more mid-thoracic (T6) spinal cord axons than controls. CONCLUSIONS This study confirms that a fully human recombinant neurite outgrowth-promoting monoclonal IgM is therapeutic in a model of progressive MS using multiple reparative readouts. The minimum effective dose is similar to that of a remyelination-promoting monoclonal human IgM discovered by our group that is presently in clinical trials for MS.
Collapse
Affiliation(s)
- Bharath Wootla
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aleksandar Denic
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Arthur E Warrington
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. .,Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. .,Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
Retrograde labeling of regenerating motor and sensory neurons using silicone caps. J Neurosci Methods 2016; 259:122-128. [DOI: 10.1016/j.jneumeth.2015.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 02/04/2023]
|
11
|
Beyer F, Küry P. Novel approaches for the development of peripheral nerve regenerative therapies. Neural Regen Res 2016; 10:1743-5. [PMID: 26807100 PMCID: PMC4705777 DOI: 10.4103/1673-5374.170298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Felix Beyer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|