1
|
Awad H, Efanov A, Rajan J, Denney A, Gigax B, Kobalka P, Kelani H, Basso DM, Bozinovski J, Tili E. Histological Findings After Aortic Cross-Clamping in Preclinical Animal Models. J Neuropathol Exp Neurol 2021; 80:895-911. [PMID: 34534333 PMCID: PMC8783616 DOI: 10.1093/jnen/nlab084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spinal cord ischemic injury and paralysis are devastating complications after open surgical repair of thoracoabdominal aortic aneurysms. Preclinical models have been developed to simulate the clinical paradigm to better understand the neuropathophysiology and develop therapeutic treatment. Neuropathological findings in the preclinical models have not been comprehensively examined before. This systematic review studies the past 40 years of the histological findings after open surgical repair in preclinical models. Our main finding is that damage is predominantly in the grey matter of the spinal cord, although white matter damage in the spinal cord is also reported. Future research needs to examine the neuropathological findings in preclinical models after endovascular repair, a newer type of surgical repair used to treat aortic aneurysms.
Collapse
Affiliation(s)
- Hamdy Awad
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Alexander Efanov
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Jayanth Rajan
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Andrew Denney
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Bradley Gigax
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Peter Kobalka
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Hesham Kelani
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - D Michele Basso
- Department of Neuroscience, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio, USA
| | - John Bozinovski
- Division of Cardiac Surgery, Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Esmerina Tili
- From the Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Fu D, Liu H, Liu H, Yao J. Effects of D‑Ala2, D‑Leu5‑Enkephalin pre‑ and post‑conditioning in a rabbit model of spinal cord ischemia and reperfusion injury. Mol Med Rep 2019; 20:4811-4820. [PMID: 31638217 PMCID: PMC6854538 DOI: 10.3892/mmr.2019.10729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 06/20/2019] [Indexed: 11/15/2022] Open
Abstract
It has recently been revealed that during the aorta-clamped period, D-Ala2, D-Leu5-Enkephalin (DADLE) infusion can protect the spinal cord against ischemia and reperfusion (I/R) injury. However, the protective effects of DADLE administration prior to ischemia or at the time of early reperfusion have not yet been investigated. Drug pre- or post-conditioning can serve as a more valuable clinical strategy. Therefore, the present study was designed to investigate the neuroprotective effect of DADLE infusion at different time intervals in order to determine the optimum time point for ischemic spinal cord protection. A total of 40 New Zealand white rabbits were randomly divided into 5 groups: Sham-operated (Sham), normal saline pre-conditioning (NS), DADLE per-conditioning (Dper), DADLE pre-conditioning (Dpre) and DADLE post-conditioning (Dpost). All animals were subjected to spinal cord ischemia for 30 min followed by 48 h reperfusion. Hind limb motor functions were assessed according to the Tarlov criterion when the animals regained consciousness, 6, 24 and 48 h after reperfusion. Histological analysis and the number of viable α-motor neurons were also used to assess the extent of spinal cord injury. Compared with the NS group, the Tarlov scores and the number of normal neurons were significantly higher in the Dper group (P<0.05), which were consistent with the results of a previous study. In addition, the paraplegia rate and loss of normal motor neurons were lower in the DADLE per- and post-conditioning groups compared with the DADLE pre-conditioning; however, these were not statistically significant. DADLE 0.05 mg/kg administration at three time points all mitigated normal motor neuron injury in the anterior horn and decreased the paraplegia rates in rabbits. The therapeutic benefits appeared best in the post-conditioning group with DADLE, and worst in the pre-conditioning group.
Collapse
Affiliation(s)
- Danyun Fu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Haitong Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Hua Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Junyan Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai 200080, P.R. China
| |
Collapse
|
3
|
The influence of experimental inflammation and axotomy on leucine enkephalin (leuENK) distribution in intramural nervous structures of the porcine descending colon. BMC Vet Res 2018; 14:169. [PMID: 29793486 PMCID: PMC5968568 DOI: 10.1186/s12917-018-1496-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 05/14/2018] [Indexed: 12/13/2022] Open
Abstract
Background The enteric nervous system (ENS), located in the intestinal wall and characterized by considerable independence from the central nervous system, consists of millions of cells. Enteric neurons control the majority of functions of the gastrointestinal tract using a wide range of substances, which are neuromediators and/or neuromodulators. One of them is leucine–enkephalin (leuENK), which belongs to the endogenous opioid family. It is known that opioids in the gastrointestinal tract have various functions, including visceral pain conduction, intestinal motility and secretion and immune processes, but many aspects of distribution and function of leuENK in the ENS, especially during pathological states, remain unknown. Results During this experiment, the distribution of leuENK – like immunoreactive (leuENK-LI) nervous structures using the immunofluorescence technique were studied in the porcine colon in physiological conditions, during chemically-induced inflammation and after axotomy. The study included the circular muscle layer, myenteric (MP), outer submucous (OSP) and inner submucous plexus (ISP) and the mucosal layer. In control animals, the number of leuENK-LI neurons amounted to 4.86 ± 0.17%, 2.86 ± 0.28% and 1.07 ± 0.08% in the MP, OSP and ISP, respectively. Generally, both pathological stimuli caused an increase in the number of detected leuENK-LI cells, but the intensity of the observed changes depended on the factor studied and part of the ENS. The percentage of leuENK-LI perikarya amounted to 11.48 ± 0.96%, 8.71 ± 0.13% and 9.40 ± 0.76% during colitis, and 6.90 ± 0.52% 8.46 ± 12% and 4.48 ± 0.44% after axotomy in MP, OSP and ISP, respectively. Both processes also resulted in an increase in the number of leuENK-LI nerves in the circular muscle layer, whereas changes were less visible in the mucosa during inflammation and axotomy did not change the number of leuENK-LI mucosal fibers. Conclusions LeuENK in the ENS takes part in intestinal regulatory processes not only in physiological conditions, but also under pathological factors. The observed changes are probably connected with the participation of leuENK in sensory and motor innervation and the neuroprotective effects of this substance. Differences in the number of leuENK-LI neurons during inflammation and after axotomy may suggest that the exact functions of leuENK probably depend on the type of pathological factor acting on the intestine.
Collapse
|
4
|
Fu D, Liu H, Li S, Chen L, Yao J. Antioxidative and Antiapoptotic Effects of Delta-Opioid Peptide [D-Ala 2, D-Leu 5] Enkephalin on Spinal Cord Ischemia-Reperfusion Injury in Rabbits. Front Neurosci 2017; 11:603. [PMID: 29163008 PMCID: PMC5671641 DOI: 10.3389/fnins.2017.00603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023] Open
Abstract
Background: In our previous study, we found that regional administration of delta-opioid peptide [D-Ala2, D-Leu5] enkephalin (DADLE) could provide dose-dependent protection on spinal cord ischemia-reperfusion (I/R) injury in rabbits. However, the relative protective molecular mechanisms underlying this neuroprotection remain unclear. The purpose of this study was to investigate whether DADLE provided the protection in spinal cord I/R injury through its antioxidant property by decreasing malondialdehyde (MDA) and nitric oxide (NO) levels and increasing glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels and through its antiapoptotic capacity by inhibiting caspase-3 and p53 expression. Methods: The rabbits were divided into three groups. The animals in Group NS and Group DADLE were administered with normal saline (NS) or DADLE via aorta during 30 min of ischemia respectively, while the one in Group Sham received no intervention. During the period of reperfusion, the rabbit's blood samples were collected for enzyme-linked immunoabsorbent assay (ELISA) examinations of MDA, NO, GSH-Px and SOD. At 48 h after reperfusion, the lumbar spinal cords were harvested for immunohistochemical, real-time polymerase chain reaction (PCR) and western blot studies to detect the caspase-3 and p53 expressions. Results: The activities of serum MDA and NO showed significant reductions in the DADLE group as compared with the control group. By contrast, the levels of serum GSH-Px and SOD were significantly higher in the DADLE group than those in the NS group. In addition, caspase-3 and p53 expression were significantly increased in the NS group, while DADLE mitigated these changes. Conclusions: The protective effects of DADLE at the dosage of 0.05 mg/kg may be related to its antioxidant and antiapoptosis properties in the rabbit model of spinal cord I/R injury.
Collapse
Affiliation(s)
- Danyun Fu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haitong Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shitong Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianhua Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyan Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Narayanam MK, Ma G, Champagne PA, Houk KN, Murphy JM. Synthesis of [ 18 F]Fluoroarenes by Nucleophilic Radiofluorination of N-Arylsydnones. Angew Chem Int Ed Engl 2017; 56:13006-13010. [PMID: 28834065 PMCID: PMC5674999 DOI: 10.1002/anie.201707274] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/17/2017] [Indexed: 11/08/2022]
Abstract
A practical method for radiofluorination of anilines with [18 F]fluoride via N-arylsydnone intermediates is described. These precursors are stable, easy to handle and facilitate direct and regioselective 18 F-labeling to prepare [18 F]fluoroarenes. The value of this methodology is further highlighted by successful application to prepare an 18 F-labeled neuropeptide.
Collapse
Affiliation(s)
- Maruthi Kumar Narayanam
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Gaoyuan Ma
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Pier Alexandre Champagne
- Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jennifer M Murphy
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
6
|
Narayanam MK, Ma G, Champagne PA, Houk KN, Murphy JM. Synthesis of [18F]Fluoroarenes by Nucleophilic Radiofluorination ofN-Arylsydnones. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maruthi Kumar Narayanam
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles CA 90095 USA
| | - Gaoyuan Ma
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles CA 90095 USA
| | - Pier Alexandre Champagne
- Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering; University of California, Los Angeles; Los Angeles CA 90095 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering; University of California, Los Angeles; Los Angeles CA 90095 USA
| | - Jennifer M. Murphy
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles CA 90095 USA
| |
Collapse
|
7
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2017; 68:631-700. [PMID: 27343248 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
8
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
9
|
Grant Liska M, Crowley MG, Lippert T, Corey S, Borlongan CV. Delta Opioid Receptor and Peptide: A Dynamic Therapy for Stroke and Other Neurological Disorders. Handb Exp Pharmacol 2017; 247:277-299. [PMID: 28315071 DOI: 10.1007/164_2017_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Research of the opioid system and its composite receptors and ligands has revealed its promise as a potential therapy for neurodegenerative diseases such as stroke and Parkinson's Disease. In particular, delta opioid receptors (DORs) have been elucidated as a therapeutically distinguished subset of opioid receptors and a compelling target for novel intervention techniques. Research is progressively shedding light on the underlying mechanism of DORs and has revealed two mechanisms of DOR neuroprotection; DORs function to maintain ionic homeostasis and also to trigger endogenous neuroprotective pathways. Delta opioid agonists such as (D-Ala2, D-Leu5) enkephalin (DADLE) have been shown to promote neuronal survival and decrease apoptosis, resulting in a substantial amount of research for its application as a neurological therapeutic. Most notably, DADLE has demonstrated significant potential to reduce cell death following ischemic events. Current research is working to reveal the complex mechanisms of DADLE's neuroprotective properties. Ultimately, our knowledge of the DOR receptors and agonists has made the opioid system a promising target for therapeutic intervention in many neurological disorders.
Collapse
Affiliation(s)
- M Grant Liska
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Marci G Crowley
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Trenton Lippert
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
10
|
Liu H, Chen B, Li S, Yao J. Dose-dependent neuroprotection of delta-opioid peptide [D-Ala 2 , D-Leu 5 ] enkephalin on spinal cord ischemia-reperfusion injury by regional perfusion into the abdominal aorta in rabbits. J Vasc Surg 2016; 63:1074-81. [DOI: 10.1016/j.jvs.2014.11.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/15/2014] [Indexed: 11/15/2022]
|