1
|
Zailani H, Satyanarayanan SK, Liao WC, Hsu YT, Huang SY, Gałecki P, Su KP, Chang JPC. Roles of Omega-3 Polyunsaturated Fatty Acids in Managing Cognitive Impairment in Chronic Obstructive Pulmonary Disease: A Review. Nutrients 2023; 15:4363. [PMID: 37892438 PMCID: PMC10609799 DOI: 10.3390/nu15204363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) contributes significantly to the death of people worldwide, especially the elderly. An essential feature of COPD is pulmonary inflammation, which results from long-term exposure to noxious substances from cigarette smoking and other environmental pollutants. Pulmonary inflammatory mediators spill over to the blood, leading to systemic inflammation, which is believed to play a significant role in the onset of a host of comorbidities associated with COPD. A substantial comorbidity of concern in COPD patients that is often overlooked in COPD management is cognitive impairment. The exact pathophysiology of cognitive impairment in COPD patients remains a mystery; however, hypoxia, oxidative stress, systemic inflammation, and cerebral manifestations of these conditions are believed to play crucial roles. Furthermore, the use of medications to treat cognitive impairment symptomatology in COPD patients has been reported to be associated with life-threatening adverse effects, hence the need for alternative medications with reduced side effects. In this Review, we aim to discuss the impact of cognitive impairment in COPD management and the potential mechanisms associated with increased risk of cognitive impairment in COPD patients. The promising roles of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in improving cognitive deficits in COPD patients are also discussed. Interestingly, ω-3 PUFAs can potentially enhance the cognitive impairment symptomatology associated with COPD because they can modulate inflammatory processes, activate the antioxidant defence system, and promote amyloid-beta clearance from the brain. Thus, clinical studies are crucial to assess the efficacy of ω-3 PUFAs in managing cognitive impairment in COPD patients.
Collapse
Grants
- MOST 109-2320-B-038-057-MY3, 109-2320-B-039-066, 110-2321-B-006-004, 111-2321-B-006-008, 110-2811-B-039-507, 110-2320-B-039-048-MY2, and 110-2320-B-039-047-MY3, 110-2813-C-039-327-B, 110-2314-B-039-029-MY3, 111-2314-B-039-041-MY3 Ministry of Science and Technology, Taiwan
- ANHRF 109-31, 109-40, 110-13, 110-26, 110-44, 110-45, 111-27, and 111-28 An-Nan Hospital, China Medical University, Tainan, Taiwan
- CMRC-CMA-2 Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan
- CMU 110-AWARD-02, CMU108-SR-106, CMU110-N-17, CMU110-SR-73 China Medical University, Taichung, Taiwan
- CRS-108-048, DMR-105-053, DMR-109-102, DMR-109-244, DMR-HHC-109-11, DMR-HHC-109-12, DMR-HHC-110-10, DMR-110-124, DMR-111-245 and DMR-HHC-111-8 China Medical University Hospital, Taichung, Taiwan
Collapse
Affiliation(s)
- Halliru Zailani
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- Graduate Institute of Nutrition, China Medical University, Taichung 404, Taiwan
- Department of Biochemistry, Ahmadu Bello University, Zaria 810106, Nigeria
| | - Senthil Kumaran Satyanarayanan
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
| | - Wei-Chih Liao
- Division of Pulmonary and Critical Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yi-Ting Hsu
- Department of Neurology, China Medical University Hospital, Taichung 404327, Taiwan;
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Centre, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Kuan-Pin Su
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 717, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
2
|
The Mechanism of Two Benzaldehydes from Aspergillus terreus C23-3 Improve Neuroinflammatory and Neuronal Damage to Delay the Progression of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24020905. [PMID: 36674443 PMCID: PMC9866346 DOI: 10.3390/ijms24020905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disease, is the most common cause of dementia in humans worldwide. Although more in-depth research has been carried out on AD, the therapeutic effect of AD is not as expected, and natural active substances are increasingly sought after by scientists. In the present study, we evaluated two benzaldehydes from a coral-derived Aspergillus terreus strain C23-3, their anti-neuroinflammatory activity in microglia (BV-2), and their neuroprotective activity and mechanisms in hippocampal neuronal cells (HT-22). These include the protein expression of iNOS, COX-2, MAPKs pathways, Tau protein-related pathways, caspases family-related signaling pathways. They also include the levels of TNF-α, IL-6, IL-18 and ROS, as well as the level of mitochondrial oxidative stress and neuronal cell apoptosis. The results showed that both benzaldehydes were effective in reducing the secretion of various inflammatory mediators, as well as pro-inflammatory factors. Among these, benzaldehyde 2 inhibited mitochondrial oxidative stress and blocked neuronal cell apoptosis through Tau protein-related pathways and caspases family-related signaling pathways, thereby inhibiting β-amyloid (Aβ)-induced neurological damage. This study reveals that benzaldehyde 2 has potential as a therapeutic agent for Alzheimer's disease, and offers a new approach to the high-value use of marine natural products.
Collapse
|
3
|
Wang X, Yang C, Yang L, Zhang Y. Modulating the gut microbiota ameliorates spontaneous seizures and cognitive deficits in rats with kainic acid-induced status epilepticus by inhibiting inflammation and oxidative stress. Front Nutr 2022; 9:985841. [PMID: 36105577 PMCID: PMC9465080 DOI: 10.3389/fnut.2022.985841] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Epilepsy is a highly prevalent neurological disease whose treatment has always been challenging. Hence, it is crucial to explore the molecular mechanisms underlying epilepsy inhibition. Inflammation and oxidative stress are important pathophysiological changes in epilepsy that contribute to the development of spontaneous seizures and cognitive deficits. In recent years, altered gut microbiota composition was found to be involved in epilepsy, but the underlying mechanism remains unclear. Modulation of the gut microbiota showed a positive impact on the brain by regulating oxidative stress and inflammation. Hence, this study evaluated the effect of modulating gut dysbiosis by treating epileptic rats with prebiotics, probiotics, and synbiotics and investigated the underlying molecular mechanism. Materials and methods Epileptic rat models were established by injecting 1 μl of kainic acid (KA, 0.4 μg/μl) into the right amygdalae. The rats were divided into Sham, KA, KA+prebiotic [inulin:1 g/kg body weight (bw)/day], KA+probiotics (10 × 109cfu of each bacteria/kg, bw/day), and KA+synbiotic groups (1:1 mixture of prebiotics and probiotics). Seizures were monitored, and cognitive function was assessed in all rats. Biochemical indicators, namely, oxidative stress, DNA damage, glutamate levels, and inflammation markers, were also determined. Results The KA-induced status epilepticus (SE) rats exhibited spontaneous seizures and cognitive deficits. This was accompanied by the activation of glial cells, the inflammatory response (IL-1 β, IL-6, and TNF-α), lipid peroxidation (MDA), DNA damage (8-OHdG), the release of glutamate, and a decline in total antioxidant ability (GSH). These changes were alleviated by partial treatment with prebiotics, probiotics, and synbiotics. Conclusion Modulating gut dysbiosis ameliorates spontaneous seizures and cognitive deficits in rats with KA-induced status epilepticus. The underlying mechanism may potentially involve the inhibition of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Xue Wang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunyu Yang
- Department of Neurology, Dehui People's Hospital, Jilin, China
| | - Liu Yang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yongbo Zhang
| |
Collapse
|
4
|
Hussain M, Rashid H, Katyal J. Response to sertraline and antiepileptic drugs in pentylenetetrazole kindling in rats. Brain Res 2021; 1771:147645. [PMID: 34480951 DOI: 10.1016/j.brainres.2021.147645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Anti-epileptic drugs (AEDs) are the mainstay of epilepsy treatment but these may be a potential risk factor for behavioral disturbances particularly depression which requires treatment. In this study, the effect of antidepressant sertraline (SRT) in combination with AEDs sodium valproate (SV) and levetiracetam (LEV) on seizures, cognitive impairment and oxidative stress in rats was evaluated. After administration of 24th injection of pentylenetetrazole (PTZ), 77.8% rats were kindled. Administration of SRT showed no protective effect on kindling development while SV was 100% protective. With LEV 42.9% were kindled. On combining SRT with SV or LEV 25% and 20% rats were kindled. A significant increase in latency to reach platform zone in Morris water maze(MWM), and increased transfer latencies in Elevated plus maze(EPM) was observed in PTZ kindled rats as compared to normal control on day 49 and when LEV was combined with SRT. In EPM test, however none of the drug treatments had any effect on transfer latencies except LEV pretreated kindled group. In Passive avoidance (PA) test, kindling was associated with a significant decrease in retention time(p = 0.018) while LEV and SV had no effect. The PTZ kindled rats showed significantly higher malondialdehyde(MDA) levels in brain hippocampus(p = 0.0286) while both SRT and SV were associated with significantly lower MDA levels as compared to kindled control group. In case of glutathione (GSH), kindling had no significant effect. The use of sertraline for depression in persons with epilepsy on AEDs needs to be carefully evaluated and monitored due to likelihood of individual variation.
Collapse
Affiliation(s)
- Md Hussain
- Neuropharmacology Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Haroon Rashid
- Neuropharmacology Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jatinder Katyal
- Neuropharmacology Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
5
|
Alachkar A, Lotfy M, Adeghate E, Łażewska D, Kieć-Kononowicz K, Sadek B. Ameliorating effects of histamine H3 receptor antagonist E177 on acute pentylenetetrazole-induced memory impairments in rats. Behav Brain Res 2021; 405:113193. [PMID: 33626390 DOI: 10.1016/j.bbr.2021.113193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/14/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022]
Abstract
Histamine H3 receptors (H3Rs) are involved in several neuropsychiatric diseases including epilepsy. Therefore, the effects of H3R antagonist E177 (5 and 10 mg/kg, intraperitoneal (i.p.)) were evaluated on acute pentylenetetrazole (PTZ)-induced memory impairments, oxidative stress levels (glutathione (GSH), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD)), various brain neurotransmitters (histamine (HA), acetylcholine (ACh), γ-aminobutyric acid (GABA)), and glutamate (Glu), acetylcholine esterase (AChE) activity, and c-fos protein expression in rats. E177 (5 and 10 mg/kg, i.p.) significantly prolonged step-through latency (STL) time in single-trial passive avoidance paradigm (STPAP), and shortened transfer latency time (TLT) in elevated plus maze paradigm (EPMP) (all P < 0.05). Moreover, and in the hippocampus of PTZ-treated animals, E177 mitigated abnormal levels of AChE activity, ACh and HA (all P < 0.05), but failed to modify brain levels of GABA and Glu. Furthermore, E177 alleviated hippocampal oxidative stress by significantly decreasing the elevated levels of MDA, and increasing the abnormally decreased level of GSH (all P < 0.05). Furthermore, E177 reduced elevated levels of hippocampal c-fos protein expression in hippocampal tissues of PTZ-treated animals (all P < 0.05). The observed results propose the potential of H3R antagonist E177 with an added advantage of avoiding cognitive impairment, emphasizing the H3Rs as a prospective target for future pharmacological management of epilepsy with associated memory impairments.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 17666, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, Abu Dhabi, United Arab Emirates
| | - Mohamed Lotfy
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 17666, United Arab Emirates
| | - Ernest Adeghate
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, Abu Dhabi, United Arab Emirates; Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 17666, United Arab Emirates
| | - Dorota Łażewska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 17666, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Alachkar A, Ojha SK, Sadeq A, Adem A, Frank A, Stark H, Sadek B. Experimental Models for the Discovery of Novel Anticonvulsant Drugs: Focus on Pentylenetetrazole-Induced Seizures and Associated Memory Deficits. Curr Pharm Des 2020; 26:1693-1711. [PMID: 32003682 DOI: 10.2174/1381612826666200131105324] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Epilepsy is a chronic neurological disorder characterized by irregular, excessive neuronal excitability, and recurrent seizures that affect millions of patients worldwide. Currently, accessible antiepileptic drugs (AEDs) do not adequately support all epilepsy patients, with around 30% patients not responding to the existing therapies. As lifelong epilepsy treatment is essential, the search for new and more effective AEDs with an enhanced safety profile is a significant therapeutic goal. Seizures are a combination of electrical and behavioral events that can induce biochemical, molecular, and anatomic changes. Therefore, appropriate animal models are required to evaluate novel potential AEDs. Among the large number of available animal models of seizures, the acute pentylenetetrazole (PTZ)-induced myoclonic seizure model is the most widely used model assessing the anticonvulsant effect of prospective AEDs, whereas chronic PTZ-kindled seizure models represent chronic models in which the repeated administration of PTZ at subconvulsive doses leads to the intensification of seizure activity or enhanced seizure susceptibility similar to that in human epilepsy. In this review, we summarized the memory deficits accompanying acute or chronic PTZ seizure models and how these deficits were evaluated applying several behavioral animal models. Furthermore, major advantages and limitations of the PTZ seizure models in the discovery of new AEDs were highlighted. With a focus on PTZ seizures, the major biochemicals, as well as morphological alterations and the modulated brain neurotransmitter levels associated with memory deficits have been illustrated. Moreover, numerous medicinal compounds with concurrent anticonvulsant, procognitive, antioxidant effects, modulating effects on several brain neurotransmitters in rodents, and several newly developed classes of compounds applying computer-aided drug design (CADD) have been under development as potential AEDs. The article details the in-silico approach following CADD, which can be utilized for generating libraries of novel compounds for AED discovery. Additionally, in vivo studies could be useful in demonstrating efficacy, safety, and novel mode of action of AEDs for further clinical development.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| | - Shreesh K Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| | - Adel Sadeq
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| |
Collapse
|
7
|
Alachkar A, Azimullah S, Lotfy M, Adeghate E, Ojha SK, Beiram R, Łażewska D, Kieć-Kononowicz K, Sadek B. Antagonism of Histamine H3 receptors Alleviates Pentylenetetrazole-Induced Kindling and Associated Memory Deficits by Mitigating Oxidative Stress, Central Neurotransmitters, and c-Fos Protein Expression in Rats. Molecules 2020; 25:molecules25071575. [PMID: 32235506 PMCID: PMC7181068 DOI: 10.3390/molecules25071575] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Histamine H3 receptors (H3Rs) are involved in several neuropsychiatric diseases including epilepsy. Therefore, the effects of H3R antagonist E177 (5 and 10 mg/kg, intraperitoneal (i.p.)) were evaluated on the course of kindling development, kindling-induced memory deficit, oxidative stress levels (glutathione (GSH), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD)), various brain neurotransmitters (histamine (HA), acetylcholine (ACh), γ-aminobutyric acid (GABA)), and glutamate (GLU), acetylcholine esterase (AChE) activity, and c-Fos protein expression in pentylenetetrazole (PTZ, 40 mg/kg) kindled rats. E177 (5 and 10 mg/kg, i.p.) significantly decreased seizure score, increased step-through latency (STL) time in inhibitory avoidance paradigm, and decreased transfer latency time (TLT) in elevated plus maze (all P < 0.05). Moreover, E177 mitigated oxidative stress by significantly increasing GSH, CAT, and SOD, and decreasing the abnormal level of MDA (all P < 0.05). Furthermore, E177 attenuated elevated levels of hippocampal AChE, GLU, and c-Fos protein expression, whereas the decreased hippocampal levels of HA and ACh were modulated in PTZ-kindled animals (all P < 0.05). The findings suggest the potential of H3R antagonist E177 as adjuvant to antiepileptic drugs with an added advantage of preventing cognitive impairment, highlighting the H3Rs as a potential target for the therapeutic management of epilepsy with accompanied memory deficits.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (A.A.); (S.A.); (S.K.O.); (R.B.)
| | - Sheikh Azimullah
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (A.A.); (S.A.); (S.K.O.); (R.B.)
| | - Mohamed Lotfy
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 17666, UAE;
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE;
| | - Shreesh K. Ojha
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (A.A.); (S.A.); (S.K.O.); (R.B.)
| | - Rami Beiram
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (A.A.); (S.A.); (S.K.O.); (R.B.)
| | - Dorota Łażewska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland; (D.Ł.); (K.K.-K.)
| | - Katarzyna Kieć-Kononowicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9 St., 30-688 Kraków, Poland; (D.Ł.); (K.K.-K.)
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; (A.A.); (S.A.); (S.K.O.); (R.B.)
- Correspondence: ; Tel.: +971-3-7137-512; Fax: +971-3-7672-033
| |
Collapse
|
8
|
Functional Nutrients for Epilepsy. Nutrients 2019; 11:nu11061309. [PMID: 31185666 PMCID: PMC6628163 DOI: 10.3390/nu11061309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a common neurological disorder of which seizures are a core symptom. Approximately one third of epileptic patients are resistant to antiepileptic drugs and therefore require alternative therapeutic options. Dietary and nutritional supplements can in some cases replace drugs, but with the exception of ketogenic diets, there are no officially recommended dietary considerations for patients with epilepsy. In this review we summarize a selection of nutritional suggestions that have proved beneficial in treating different types of epilepsy. We describe the types of seizures and epilepsy and follow this with an introduction to basic molecular mechanisms. We then examine several functional nutrients for which there is clinical evidence of therapeutic efficacy in reducing seizures or epilepsy-associated sudden death. We also discuss experimental results that demonstrate possible molecular mechanisms elicited by the administration of various nutrients. The availability of multiple dietary and nutritional candidates that show favorable outcomes in animals implies that assessing the clinical potential of these substances will improve translational medicine, ultimately benefitting epilepsy patients.
Collapse
|
9
|
Alzoubi KH, Mayyas F, Abu Zamzam HI. Omega-3 fatty acids protects against chronic sleep-deprivation induced memory impairment. Life Sci 2019; 227:1-7. [PMID: 30998938 DOI: 10.1016/j.lfs.2019.04.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 12/17/2022]
Abstract
AIMS The current study aims to evaluate the possible protective effect of omega-3 fatty acids on memory impairment induced by sleep-deprivation in rats. MATERIALS AND METHODS Animals were chronically sleep deprived using the modified multiple platform model (8 h/day for 8 weeks). Omega-3 fatty acids were administered as fish oil via oral gavage at a daily dose of 100 mg omega-3 PUFA/100 g BWT. The spatial learning and memory were evaluated using the radial arm water maze (RAWM). Additionally, the following oxidative stress biomarkers were measured in the hippocampus: glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG, glutathione peroxidase (GPx), catalase, superoxide dismutase (SOD), and thiobarbituric acid reactive substance (TBARS). KEY FINDINGS Animals in the SD group committed significantly more errors in both short- and long- term memory tests of the RAWM compared to other groups. On the other hand, animals that were sleep deprived and treated with omega-3 fatty acids committed similar number of errors compared to the control group. This indicates that SD impaired both short- and long- term memories, and that chronic omega-3 fatty acids administration prevented these effects. Omega-3 fatty acids also prevented the decreases in hippocampal GPx, catalase and GSH/GSSG ratio and normalized the increases in GSSG levels, which were impaired by SD model. No changes were observed on hippocampal TBARS levels, or activity of SOD among experimental groups. SIGNIFICANCE In conclusion, a protective effect of omega-3 fatty acids administration has been observed against chronic SD-induced memory impairment probably via improving hippocampus antioxidant effects.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Fadia Mayyas
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Hamza I Abu Zamzam
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
10
|
Savina T, Aripovsky A, Kulagina T. Changes in the content of fatty acids in CA1 and CA3 areas of the hippocampus of Krushinsky-Molodkina rats after single and fivefold audiogenic seizures. Epilepsy Res 2017; 135:143-149. [PMID: 28692872 DOI: 10.1016/j.eplepsyres.2017.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/30/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Audiogenic seizures (AS) are generalized seizures evoked by high frequency sounds. Since the hippocampus is involved in the generation and maintenance of seizures, the effect of AS on the composition and content of fatty acids in the CA1 and CA3 hippocampal areas of AS-susceptible Krushinsky-Molodkina (KM) rats on days 1, 3, and 14 after single and fivefold seizures were examined. The total content of all fatty acids in field СА1 was found to be lower compared with the control at all times of observation after both a single seizure or fivefold seizures. The total content of fatty acids in field СА3 decreased at all times of examination after a single seizure, whereas it remained unchanged on days 3 and 14 following five AS. The content of omega-3 fatty acids in both fields at all times of observation after a single seizure and fivefold AS did not significantly differ from that in intact animals. The absence of significant changes in the content of stearic and α-linolenic acids and a considerable decrease in the levels of palmitic, oleic, and eicosapentaenoic acids were common to both fields at all times after both a single seizure or fivefold AS. The changes in the content of fatty acids in the СА3 and СА1 fields of the brain of AS-susceptible rats indicate that fatty acids are involved in both the development of seizure activity and neuroprotective anticonvulsive processes.
Collapse
Affiliation(s)
- Tatyana Savina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Alexander Aripovsky
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia.
| | - Tatyana Kulagina
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
11
|
Jiang Y, Lu Y, Jia M, Wang X, Zhang Z, Hou Q, Wang B. Ketogenic diet attenuates spatial and item memory impairment in pentylenetetrazol-kindled rats. Brain Res 2016; 1646:451-458. [DOI: 10.1016/j.brainres.2016.06.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
|
12
|
López-Vicario C, Rius B, Alcaraz-Quiles J, García-Alonso V, Lopategi A, Titos E, Clària J. Pro-resolving mediators produced from EPA and DHA: Overview of the pathways involved and their mechanisms in metabolic syndrome and related liver diseases. Eur J Pharmacol 2016; 785:133-143. [DOI: 10.1016/j.ejphar.2015.03.092] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/02/2015] [Accepted: 03/05/2015] [Indexed: 12/18/2022]
|
13
|
Abdel-Wahab BA, Shaikh IA, Khateeb MM, Habeeb SM. Omega 3 polyunsaturated fatty acids enhance the protective effect of levetiracetam against seizures, cognitive impairment and hippocampal oxidative DNA damage in young kindled rats. Pharmacol Biochem Behav 2015; 135:105-13. [PMID: 26044965 DOI: 10.1016/j.pbb.2015.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
Abstract
Levetiracetam (LEV) is a unique, effective, relatively safe antiepileptic drug that preferentially interacts with synaptic vesicle protein 2A (SV2A). This study aimed to explore the effect of combined treatment of LEV with omega 3 (OM3) on cognitive impairment and hippocampal oxidative stress and DNA damage induced by seizures in the PTZ-kindled young rat model. Cognitive functions, biomarkers of oxidative stress, and DNA damage were assessed in PTZ-kindled young rats pretreated with single and combined treatment of LEV (30mg/kg, i.p.) and OM3 (200mg/kg, p.o.). Pretreatment with LEV and OM3 at the tested doses significantly attenuated PTZ-induced seizures and decreased cognitive impairment in both passive avoidance and elevated plus maze tests in the PTZ-kindled rats. Moreover, the increase in hippocampal glutamate, malondialdehyde and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, as well as the decrease in reduced glutathione (GSH) levels and GSH-peroxidase and superoxide dismutase activities induced by PTZ kindling, significantly decreased. These effects were higher with combined treatment of LEV with OM3 and significantly more than the observed effects of single LEV or OM3. In conclusion, the combined treatment of LEV with OM3 is more effective in seizure control and alleviating the cognitive impairment induced by PTZ kindling in the young rat model, the effects that result from the decrease in hippocampal oxidative stress and DNA damage which can be attributed to the antioxidant properties of both LEV and OM3. These results may be promising for the use of LEV and OM3 combination in the treatment of epileptic children.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, Egypt; Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | - Ibrahim A Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Masood M Khateeb
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Shafiuddin M Habeeb
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| |
Collapse
|