1
|
Cai J, Lin Y, Zhou B, Xiao F, Xu G, Lu J. SHARPIN contributes to sevoflurane-induced neonatal neurotoxicity through up-regulating HMGB1 to repress M2 like-macrophage polarization. Metab Brain Dis 2024; 39:841-853. [PMID: 38805141 DOI: 10.1007/s11011-024-01355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Sevoflurane exposure can result in neurotoxicity especially among children, which remains an important complication after surgery. However, its related mechanisms remain unclear. Here, we investigated the biological roles of SHARPIN in sevoflurane-induced neurotoxicity. As detected by qPCR, Western blotting and immunohistochemical staining, SHARPIN and HMGB1 expression was elevated in sevoflurane-stimulated mice as compared with the control mice. SHARPIN depletion attenuated hippocampus injury, repressed the expression of HMGB1 and M1-like macrophage markers (iNOS, TNF-α, IL-1β, IL-6), but enhanced the expression of M2-like macrophage markers (ARG-1, IL-10). GST pull-down and Co-IP assays demonstrated that SHARPIN directly interacted with HMGB1 to enhance HMGB1 expression in SH-SY5Y cells. The inhibitory effects of SHARPIN silencing on inflammatory reaction and M1-like macrophages were counteracted by HMGB1 overexpression. Finally, SHARPIN-HMGB1 pathway affected neuroinflammation triggered by sevoflurane via modulating macrophage polarization. Collectively, our data suggested that SHARPIN stimulated sevoflurane-induced neurotoxicity via converting M2-like macrophages to M1-like macrophages by enhancing HMGB1 expression. SHARPIN intervention may be a promising therapeutic method to relieve sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Junying Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jun Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
2
|
Lee JM, Choi YJ, Yoo MC, Yeo SG. Central Facial Nervous System Biomolecules Involved in Peripheral Facial Nerve Injury Responses and Potential Therapeutic Strategies. Antioxidants (Basel) 2023; 12:antiox12051036. [PMID: 37237902 DOI: 10.3390/antiox12051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Peripheral facial nerve injury leads to changes in the expression of various neuroactive substances that affect nerve cell damage, survival, growth, and regeneration. In the case of peripheral facial nerve damage, the injury directly affects the peripheral nerves and induces changes in the central nervous system (CNS) through various factors, but the substances involved in these changes in the CNS are not well understood. The objective of this review is to investigate the biomolecules involved in peripheral facial nerve damage so as to gain insight into the mechanisms and limitations of targeting the CNS after such damage and identify potential facial nerve treatment strategies. To this end, we searched PubMed using keywords and exclusion criteria and selected 29 eligible experimental studies. Our analysis summarizes basic experimental studies on changes in the CNS following peripheral facial nerve damage, focusing on biomolecules that increase or decrease in the CNS and/or those involved in the damage, and reviews various approaches for treating facial nerve injury. By establishing the biomolecules in the CNS that change after peripheral nerve damage, we can expect to identify factors that play an important role in functional recovery from facial nerve damage. Accordingly, this review could represent a significant step toward developing treatment strategies for peripheral facial palsy.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - You Jung Choi
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Krishnan D, Menon RN, Gopala S. SHARPIN: Role in Finding NEMO and in Amyloid-Beta Clearance and Degradation (ABCD) Pathway in Alzheimer's Disease? Cell Mol Neurobiol 2021; 42:1267-1281. [PMID: 33400084 DOI: 10.1007/s10571-020-01023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
SHANK- associated RH domain-interacting protein (SHARPIN) is a multifunctional protein associated with numerous physiological functions and many diseases. The primary role of the protein as a LUBAC-dependent component in regulating the activation of the transcription factor NF-κB accounts to its role in inflammation and antiapoptosis. Hence, an alteration of SHARPIN expression or genetic mutations or polymorphisms leads to the alteration of the above-mentioned primary physiological functions contributing to inflammation-associated diseases and cancer, respectively. However, there are complications of targeting SHARPIN as a therapeutic approach, which arises from the wide-range of LUBAC-independent functions and yet unknown roles of SHARPIN including neuronal functions. The identification of SHARPIN as a postsynaptic protein and the emerging studies indicating its role in several neurodegenerative diseases including Alzheimer's disease suggests a strong role of SHARPIN in neuronal functioning. This review summarizes the functional roles of SHARPIN in normal physiology and disease pathogenesis and strongly suggests a need for concentrating more studies on identifying the unknown neuronal functions of SHARPIN and hence its role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dhanya Krishnan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Ramsekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
4
|
Li L, Cai J, Yuan Y, Mao Y, Xu L, Han Y, Li J, Wang H. Platelet-rich plasma can release nutrient factors to promote facial nerve crush injury recovery in rats. Saudi Med J 2019; 40:1209-1217. [PMID: 31828272 PMCID: PMC6969627 DOI: 10.15537/smj.2019.12.24747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022] Open
Abstract
To evaluate the effects of platelet-rich plasma (PRP) on promoting neural repair after facial nerve compression in rats and the mechanism by which this occurs. Methods: Adult Wistar rats (n=100) were divided into 3 groups: healthy controls, surgery-only, and surgery+PRP groups. The rats underwent nerve crush injury to establish a facial palsy model. The blood from the rats was used to prepare the PRP for application to the injury site. The evaluation methods included vibrissae movement, eyelid closure, and electrophysiology. Electron microscopy, immunohistochemistry, and real-time polymerase chain reaction (PCR) were used to detect nutrient factor expression in the brain and nerve sections. This study was conducted in Shandong Provincial ENT Hospital Affiliated to Shandong University, Shandong, China between January and November 2018. Results: Platelet-rich plasma promotes the recovery of vibrissae movement, eyelid closure, and electrophysiological function in a rat model of nerve crush injury. Hematoxylin and eosin staining, toluidine blue staining, and electron microscopy showed significant recovery of Schwann cells and axons in the PRP group. Polymerase chain reaction results showed that PRP releases growth factors, which include nerve growth factor and brain-derived neurotrophic factor. Immunohistochemistry also demonstrated higher levels of S-100 protein expression in the PRP group compared to the other groups. Conclusions: Platelet-rich plasma releases nutrient factors in the brainstem, and the use of PRP can promote injury recovery.
Collapse
Affiliation(s)
- Liheng Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, People Republic of China. E-mail.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Bii VM, Rae DT, Trobridge GD. A novel gammaretroviral shuttle vector insertional mutagenesis screen identifies SHARPIN as a breast cancer metastasis gene and prognostic biomarker. Oncotarget 2015; 6:39507-20. [PMID: 26506596 PMCID: PMC4741842 DOI: 10.18632/oncotarget.6232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/14/2015] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of malignancy among U.S. women. Metastasis results in a poor prognosis and increased mortality, but the molecular mechanisms by which metastatic tumors occur are not well understood. Identifying the genes that drive the metastatic process could provide targets for improved therapy and biomarkers to improve BC patient outcomes. Using a forward mutagenesis screen, BC cells mutagenized with a replication-incompetent gammaretroviral vector (γRV) were xenotransplanted into the mammary fat pad of immunodeficient mice. In this approach the vector provirus dysregulates nearby genes, providing a selective advantage to transduced cells to form metastases. Metastatic tumors were analyzed for proviral integration sites to identify nearby candidate metastasis genes. The γRV has a transgene cassette that allows for rescue in bacteria and rapid identification of vector integration sites. Using this approach, we identified the previously described metastasis gene WWTR1 (TAZ), and three other novel candidate metastasis genes including SHARPIN. SHARPIN was independently validated in vivo as a BC metastasis gene. Analysis of patient data showed that SHARPIN expression predicts metastasis-free survival after adjuvant therapy. Our approach has broad potential to identify genes involved in oncogenic processes for BC and other cancers. We show here it can identify both known (WWTR1) and novel (SHARPIN) BC metastasis genes.
Collapse
Affiliation(s)
- Victor M. Bii
- Washington State University College of Pharmacy, WSU Spokane, Spokane, WA, USA
| | - Dustin T. Rae
- Washington State University College of Pharmacy, WSU Spokane, Spokane, WA, USA
| | - Grant D. Trobridge
- Washington State University College of Pharmacy, WSU Spokane, Spokane, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|