1
|
Shi Y, Wu W. Multimodal non-invasive non-pharmacological therapies for chronic pain: mechanisms and progress. BMC Med 2023; 21:372. [PMID: 37775758 PMCID: PMC10542257 DOI: 10.1186/s12916-023-03076-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Chronic pain conditions impose significant burdens worldwide. Pharmacological treatments like opioids have limitations. Non-invasive non-pharmacological therapies (NINPT) encompass diverse interventions including physical, psychological, complementary and alternative approaches, and other innovative techniques that provide analgesic options for chronic pain without medications. MAIN BODY This review elucidates the mechanisms of major NINPT modalities and synthesizes evidence for their clinical potential across chronic pain populations. NINPT leverages peripheral, spinal, and supraspinal mechanisms to restore normal pain processing and limit central sensitization. However, heterogeneity in treatment protocols and individual responses warrants optimization through precision medicine approaches. CONCLUSION Future adoption of NINPT requires addressing limitations in standardization and accessibility as well as synergistic combination with emerging therapies. Overall, this review highlights the promise of NINPT as a valuable complementary option ready for integration into contemporary pain medicine paradigms to improve patient care and outcomes.
Collapse
Affiliation(s)
- Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
2
|
Matesanz-García L, Schmid AB, Cáceres-Pajuelo JE, Cuenca-Martínez F, Arribas-Romano A, González-Zamorano Y, Goicoechea-García C, Fernández-Carnero J. Effect of Physiotherapeutic Interventions on Biomarkers of Neuropathic Pain: A Systematic Review of Preclinical Literature. THE JOURNAL OF PAIN 2022; 23:1833-1855. [PMID: 35768044 PMCID: PMC7613788 DOI: 10.1016/j.jpain.2022.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/02/2023]
Abstract
The purpose of this systematic review was to evaluate the effects of physiotherapeutic interventions on biomarkers of neuropathic pain in preclinical models of peripheral neuropathic pain (PNP). The search was performed in Pubmed, Web of Science, EMBASE, Cochrane, Cinhal, Psycinfo, Scopus, Medline, and Science Direct. Studies evaluating any type of physiotherapy intervention for PNP (systemic or traumatic) were included. Eighty-one articles were included in this review. The most common PNP model was chronic constriction injury, and the most frequently studied biomarkers were related to neuro-immune processes. Exercise therapy and Electro-acupuncture were the 2 most frequently studied physiotherapy interventions while acupuncture and joint mobilization were less frequently examined. Most physiotherapeutic interventions modulated the expression of biomarkers related to neuropathic pain. Whereas the results seem promising; they have to be considered with caution due to the high risk of bias of included studies and high heterogeneity of the type and anatomical localization of biomarkers reported. The review protocol is registered on PROSPERO (CRD42019142878). PERSPECTIVE: This article presents the current evidence about physiotherapeutic interventions on biomarkers of neuropathic pain in preclinical models of peripheral neuropathic pain. Existing findings are reviewed, and relevant data are provided on the effectiveness of each physiotherapeutic modality, as well as its certainty of evidence and clinical applicability.
Collapse
Affiliation(s)
- Luis Matesanz-García
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Annina B Schmid
- Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Ferran Cuenca-Martínez
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain.
| | - Alberto Arribas-Romano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
| | - Yeray González-Zamorano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Grupo de Investigación de Neurorrehabilitación del Daño Cerebral y los Trastornos del Movimiento (GINDAT), Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | | | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain; Grupo de Investigación de Neurorrehabilitación del Daño Cerebral y los Trastornos del Movimiento (GINDAT), Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain; Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain; Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora URJC-Banco de Santander, Madrid, Spain; La Paz Hospital Institute for Health Research, IdiPAZ, Madrid, Spain
| |
Collapse
|
3
|
Huang J, Yang C, Zhao K, Zhao Z, Chen Y, Wang T, Qu Y. Transcutaneous Electrical Nerve Stimulation in Rodent Models of Neuropathic Pain: A Meta-Analysis. Front Neurosci 2022; 16:831413. [PMID: 35173577 PMCID: PMC8841820 DOI: 10.3389/fnins.2022.831413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 12/09/2022] Open
Abstract
Transcutaneous electrical nerve stimulation (TENS) is a non-invasive therapeutic intervention that is typically used for many years to treat chronic pain in patients who are refractory to pain medications. However, evidence of the efficacy of TENS treatment for neuropathic pain is lacking in humans. To further understand the efficacy of TENS under various intervention conditions and illuminate the current circumstance and future research directions, we systematically reviewed animal studies investigating the efficacy of TENS in relieving pain in neuropathic pain rodent models. We searched the Cochrane Library, EMBASE, MEDLINE (via PubMed), and Web of Science and identified 11 studies. Two meta-analyses were performed. The first meta-analysis showed that a single TENS treatment was capable of temporarily ameliorating neuropathic pain when compared to control groups with a significant effect (standardized mean difference: 1.54; 95% CI: 0.65, 2.42; p = 0.0007; I2 = 58%). Significant temporary alleviation in neuropathic pain intensity was also observed in the meta-analysis of repetitive TENS (standardized mean difference: 0.85; 95% CI: 0.31, 1.40; p = 0.002; I2 = 75%). Subgroup analysis showed no effect of the timing of the application of TENS (test for subgroup difference, p = 0.47). Leave-one-out sensitivity analyses suggested that no single study had an outsized effect on the pooled estimates, which may partly prove the robustness of these findings. Other stratified analyses were prevented by the insufficient number of included studies. Overall, current data suggest that TENS might be a promising therapy to ameliorate neuropathic pain. However, the high risk of bias in the included studies suggests that cautions must be considered when interpreting these findings and it is not reasonable to directly generalize the results obtained from animal studies to clinical practice. Future studies should pay more attention to improving the quality of study design and reporting, thereby facilitating the understanding of mechanisms underlying TENS treatment, reducing more potentially unsuccessful clinical trials, and optimizing the efficacy of TENS for people with neuropathic pain.
Collapse
Affiliation(s)
- Jiapeng Huang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chunlan Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Kehong Zhao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqi Zhao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Chen
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yun Qu,
| |
Collapse
|
4
|
Yang L, Zhao J, Liu M, Li L, Yang H, Guo C, Hu J, Xiang P, Shen B, Qiao Z, Dang Y, Shi Y. Identifying metabolites of diphenidol by liquid chromatography-quadrupole/orbitrap mass spectrometry using rat liver microsomes, human blood, and urine samples. Drug Test Anal 2021; 13:1127-1135. [PMID: 33554459 DOI: 10.1002/dta.3012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 11/11/2022]
Abstract
In recent years, diphenidol [1,1-diphenyl-4-piperidino-1-butanol] has been one of the drugs that appears in suicide cases, but there are few research data on its metabolic pathways and main metabolites. Metabolite identification plays a key role in drug safety assessment and clinical application. In this study, in vivo and in vitro samples were analyzed with ultra-high-performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry. Structural elucidation of the metabolites was performed by comparing their molecular weights and product ions with those of the parent drug. As a result, 10 Phase I metabolites and 5 glucuronated Phase II metabolites were found in a blood sample and a urine sample from authentic cases. Three other Phase I metabolites were identified in the rat liver microsomes incubation solution. The results showed that the main metabolic pathways of diphenidol in the human body include hydroxylation, oxidation, dehydration, N-dealkylation, methylation, and conjugation with glucuronic acid. This study preliminarily clarified the metabolic pathways and main metabolites of diphenidol. For the development of new methods for the identification of diphenidol consumption, we recommend using M2-2 as a marker of diphenidol entering the body. The results of this study provide a theoretical basis for the pharmacokinetics and forensic scientific research of diphenidol.
Collapse
Affiliation(s)
- Liu Yang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China.,College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Junbo Zhao
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Mengxi Liu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Le Li
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Huan Yang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Caixia Guo
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Jing Hu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Baohua Shen
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Zheng Qiao
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Yonghui Dang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Shi
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
5
|
Huang PC, Tsai KL, Chen YW, Lin HT, Hung CH. Exercise Combined With Ultrasound Attenuates Neuropathic Pain in Rats Associated With Downregulation of IL-6 and TNF-α, but With Upregulation of IL-10. Anesth Analg 2017; 124:2038-2044. [PMID: 28319508 DOI: 10.1213/ane.0000000000001600] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Tsai KL, Huang PC, Wang LK, Hung CH, Chen YW. Incline treadmill exercise suppresses pain hypersensitivity associated with the modulation of pro-inflammatory cytokines and anti-inflammatory cytokine in rats with peripheral nerve injury. Neurosci Lett 2017; 643:27-31. [PMID: 28215879 DOI: 10.1016/j.neulet.2017.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 12/12/2022]
Abstract
We aimed to investigate the impact of 3 weeks of incline treadmill exercise (TE) on withdrawal responses elicited by thermal and mechanical stimuli, and on anti-inflammatory cytokine (interleukin-10, IL-10) and pro-inflammatory cytokines (IL-6 and tumor necrosis factor-alpha [TNF-α]) expression in the sciatic nerve of rats underwent chronic constriction injury (CCI). Group 1 received a sham-operation where the sciatic nerve was exposed but not ligated, while Group 2 underwent a sham-operation followed by exercising on an 8%-incline treadmill (TE8). Group 3 underwent only the CCI procedure, and Groups 4 and 5 underwent the CCI procedure followed by exercising on an 0%-incline treadmill (TE0) and TE8, respectively. Mechanical and thermal sensitivity and protein expression of IL-10, IL-6 and TNF-α were evaluated on postoperative days 12 and 26. Among the five groups, Group 5 displayed the least weight gain. Compared with Group 3, Group 5 had smaller decreases in mechanical withdrawal thresholds and heat withdrawal latencies. The CCI rats who received TE at 8% incline showed the downregulation of TNF-α and IL-6 in their sciatic nerves on postoperative days 12 and 26, as was found in the Group 3 rats. TE at 8% incline also prevented the downregulation of IL-10 in their sciatic nerves on postoperative day 12. The results demonstrated that increased incline improves the anti-nociceptive effects of treadmill running. Inclined exercise reduces the levels of pro-inflammatory cytokines and increases the level of an anti-inflammatory cytokine.
Collapse
Affiliation(s)
- Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ching Huang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Kai Wang
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan; Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Health Care, China Medical University, Taichung, Taiwan.
| |
Collapse
|