1
|
Kirby C, Barrington J, Sondag L, Loan JJ, Schreuder FH, McColl BW, Klijn CJ, Al-Shahi Salman R, Samarasekera N. Association between circulating inflammatory biomarkers and functional outcome or perihaematomal oedema after ICH: a systematic review & meta-analysis. Wellcome Open Res 2023; 8:239. [PMID: 38037559 PMCID: PMC10687391 DOI: 10.12688/wellcomeopenres.19187.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Background Currently, there are no specific medical treatments for intracerebral haemorrhage (ICH), but the inflammatory response may provide a potential route to treatment. Given the known effects of acute brain injury on peripheral immunity, we hypothesised that inflammatory biomarkers in peripheral blood may be associated with clinical outcome following ICH, as well as perihaematomal oedema (PHO), which is an imaging marker of the neuroinflammatory response. Methods We searched OVID Medline and EMBASE on 07 April 2021 for studies of humans with ICH measuring an inflammatory biomarker in peripheral blood and PHO or clinical outcome. Risk of bias was assessed both by using a scale comprising features of the Newcastle-Ottawa Assessment Scale, STROBE-ME and REMARK guidelines, and for studies included in meta-analysis, also by the QUIPS tool.We used random effects meta-analysis to pool standardised mean differences (SMD) if ≥1 study quantified the association between identical biomarkers and measures of PHO or functional outcome. Results Of 8,615 publications, 16 examined associations between 21 inflammatory biomarkers and PHO (n=1,299 participants), and 93 studies examined associations between ≥1 biomarker and clinical outcome (n=17,702 participants). Overall, 20 studies of nine biomarkers (n=3,199) met criteria for meta-analysis of associations between inflammatory biomarkers and clinical outcome. Death or dependency (modified Rankin Scale (mRS) 3‒6) 90 days after ICH was associated with higher levels of fibrinogen (SMD 0.32; 95%CI [0.04, 0.61]; p=0.025), and high mobility group box protein 1 (HMGB1) (SMD 1.67; 95%CI [0.05, 3.30]; p=0.04). Higher WBC was associated with death or dependency at 90 days (pooled SMD 0.27; 95% CI [0.11, 0.44]; p=0.001; but the association was no longer significant when the analysis was restricted to studies with a low risk of bias (pooled SMD 0.22; 95% CI -0.04-0.48). Higher CRP seemed to be associated with death or dependency at 90 days (pooled SMD 0.80; 95% CI [0.44, 1.17]; p<0.0001) but this association was no longer significant when adjusted OR were pooled (OR 0.99 (95% CI 0.98-1.01)). Conclusions Higher circulating levels of, fibrinogen and HMGB1 are associated with poorer outcomes after ICH. This study highlights the clinical importance of the inflammatory response to ICH and identifies additional research needs in determining if these associations are mediated via PHO and are potential therapeutic targets. Registration PROSPERO ( CRD42019132628; 28/05/2019).
Collapse
Affiliation(s)
- Caoimhe Kirby
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Jack Barrington
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Lotte Sondag
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Universiteit, Nijmegen, Gelderland, The Netherlands
| | - James J.M. Loan
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Floris H.B.M. Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Universiteit, Nijmegen, Gelderland, The Netherlands
| | - Barry W. McColl
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Catharina J.M. Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Universiteit, Nijmegen, Gelderland, The Netherlands
| | - Rustam Al-Shahi Salman
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Neshika Samarasekera
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
2
|
Bansal S, Burman A, Tripathi AK. Advanced glycation end products: Key mediator and therapeutic target of cardiovascular complications in diabetes. World J Diabetes 2023; 14:1146-1162. [PMID: 37664478 PMCID: PMC10473940 DOI: 10.4239/wjd.v14.i8.1146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/21/2023] [Accepted: 05/22/2023] [Indexed: 08/11/2023] Open
Abstract
The incidence of type 2 diabetes mellitus is growing in epidemic proportions and has become one of the most critical public health concerns. Cardiovascular complications associated with diabetes are the leading cause of morbidity and mortality. The cardiovascular diseases that accompany diabetes include angina, myocardial infarction, stroke, peripheral artery disease, and congestive heart failure. Among the various risk factors generated secondary to hyperglycemic situations, advanced glycation end products (AGEs) are one of the important targets for future diagnosis and prevention of diabetes. In the last decade, AGEs have drawn a lot of attention due to their involvement in diabetic patho-physiology. AGEs can be derived exogenously and endogenously through various pathways. These are a non-homogeneous, chemically diverse group of compounds formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amino groups of protein, lipids, and nucleic acid. AGEs mediate their pathological effects at the cellular and extracellular levels by multiple pathways. At the cellular level, they activate signaling cascades via the receptor for AGEs and initiate a complex series of intracellular signaling resulting in reactive oxygen species generation, inflammation, cellular proliferation, and fibrosis that may possibly exacerbate the damaging effects on cardiac functions in diabetics. AGEs also cause covalent modifications and cross-linking of serum and extracellular matrix proteins; altering their structure, stability, and functions. Early diagnosis of diabetes may prevent its progression to complications and decrease its associated comorbidities. In the present review, we recapitulate the role of AGEs as a crucial mediator of hyperglycemia-mediated detrimental effects in diabetes-associated complications. Furthermore, this review presents an overview of future perspectives for new therapeutic interventions to ameliorate cardiovascular complications in diabetes.
Collapse
Affiliation(s)
- Savita Bansal
- Department of Biochemistry, Institute of Home Sciences, University of Delhi, New Delhi 110016, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi 110016, India
| | - Asok Kumar Tripathi
- Department of Biochemistry, University College of Medical Sciences, University of Delhi, New Delhi 110095, India
| |
Collapse
|
3
|
Mo J, Hu J, Cheng X. The role of high mobility group box 1 in neuroinflammatory related diseases. Biomed Pharmacother 2023; 161:114541. [PMID: 36963363 DOI: 10.1016/j.biopha.2023.114541] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a ubiquitous and highly conserved non-histone DNA-binding protein with different biological functions according to its subcellular localization. It is widely believed that HMGB1, which is released into the extracellular space, plays a key role in the inflammatory response. In recent years, numerous studies have shown that the development of various neurological diseases such as epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), cerebrovascular disease and traumatic brain injury (TBI) are inextricably linked to inflammation. We will review the mechanisms of HMGB1 and its receptors in nervous system inflammation to provide a basis for further development of new HMGB1-based therapies.
Collapse
Affiliation(s)
- Jialu Mo
- The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, China
| | - Jiao Hu
- The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, China
| | - Xianglin Cheng
- The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, China.
| |
Collapse
|
4
|
Chu XH, Hu HY, Godje ISG, Zhu LJ, Zhu JB, Feng YL, Wang H, Zhang YB, Huang J, Sun XG. Elevated HMGB1 and sRAGE levels in cerebrospinal fluid of aneurysmal subarachnoid hemorrhage patients. J Stroke Cerebrovasc Dis 2023; 32:107061. [PMID: 36871437 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Neuroinflammation after aneurysmal subarachnoid hemorrhage (aSAH) leads to poor outcome of patients. High mobility group box 1 (HMGB1) contributes to inflammation through binding to receptors for advanced glycation end-products (RAGE) in various diseases. We aimed to determine the production of these two factors after aSAH and their relationship with clinical features. METHODS HMGB1 and soluble RAGE (sRAGE) levels in cerebrospinal fluid (CSF) of aSAH patients and controls were measured, and their temporal courses were observed. The correlation between early concentrations (days 1-3) and clinical symptoms assessed by disease severity scores, neuroinflammation estimated by CSF IL-6 levels, as well as prognosis evidenced by delayed cerebral ischemia (DCI) and 6-month adverse outcome was investigated. Finally, combined analysis of early levels for predicting prognosis was confirmed. RESULTS CSF HMGB1 and sRAGE levels were higher in aSAH patients than in controls (P < 0.05), and the levels decreased from higher early to lower over time. Their early concentrations were positively associated with disease severity scores, IL-6 levels, DCI and 6-month poor outcome (P < 0.05). HMGB1 ≥ 6045.5 pg/ml (OR = 14.291, P = 0.046) and sRAGE ≥ 572.0 pg/ml (OR = 13.988, P = 0.043) emerged as independent predictors for DCI, while HMGB1 ≥ 5163.2 pg/ml (OR = 7.483, P = 0.043) and sRAGE ≥ 537.3 pg/ml (OR = 12.653, P = 0.042) were predictors for 6-month poor outcome. Combined analysis of them improved predictive values of adverse prognosis. CONCLUSION CSF HMGB1 and sRAGE levels of aSAH patients were increased early and then varied dynamically, which might act as potential biomarkers for poor outcome, especially when co-analyzed.
Collapse
Affiliation(s)
- Xue-Hong Chu
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Hui-Yu Hu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Ivan Steve Godje Godje
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Li-Juan Zhu
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Jia-Bao Zhu
- Department of Neurosurgery, Yuncheng Central Hospital Affiliated to Shanxi Medical University, No. 3690, Hedong East Street, Yuncheng, Shanxi, 044000, PR. China
| | - Yong-Liang Feng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Hai Wang
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Yi-Bo Zhang
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Juan Huang
- School of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030000, PR. China
| | - Xin-Gang Sun
- Department of Neurology, the Second Hospital Affiliated to Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, Shanxi, 030000, PR. China.
| |
Collapse
|
5
|
Ohashi SN, DeLong JH, Kozberg MG, Mazur-Hart DJ, van Veluw SJ, Alkayed NJ, Sansing LH. Role of Inflammatory Processes in Hemorrhagic Stroke. Stroke 2023; 54:605-619. [PMID: 36601948 DOI: 10.1161/strokeaha.122.037155] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hemorrhagic stroke is the deadliest form of stroke and includes the subtypes of intracerebral hemorrhage and subarachnoid hemorrhage. A common cause of hemorrhagic stroke in older individuals is cerebral amyloid angiopathy. Intracerebral hemorrhage and subarachnoid hemorrhage both lead to the rapid collection of blood in the central nervous system and generate inflammatory immune responses that involve both brain resident and infiltrating immune cells. These responses are complex and can contribute to both tissue recovery and tissue injury. Despite the interconnectedness of these major subtypes of hemorrhagic stroke, few reviews have discussed them collectively. The present review provides an update on inflammatory processes that occur in response to intracerebral hemorrhage and subarachnoid hemorrhage, and the role of inflammation in the pathophysiology of cerebral amyloid angiopathy-related hemorrhage. The goal is to highlight inflammatory processes that underlie disease pathology and recovery. We aim to discuss recent advances in our understanding of these conditions and identify gaps in knowledge with the potential to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Sarah N Ohashi
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| | - Jonathan H DeLong
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| | - Mariel G Kozberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital/ Harvard Medical School, Boston (M.G.K., S.J.v.V.)
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown (M.G.K., S.J.v.V.)
| | - David J Mazur-Hart
- Department of Neurological Surgery (D.J.M.-H.), Oregon Health and Science University (OHSU), Portland
| | - Susanne J van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital/ Harvard Medical School, Boston (M.G.K., S.J.v.V.)
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown (M.G.K., S.J.v.V.)
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine and Knight Cardiovascular Institute (N.J.A.), Oregon Health and Science University (OHSU), Portland
| | - Lauren H Sansing
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| |
Collapse
|
6
|
Yue Q, Song Y, Liu Z, Zhang L, Yang L, Li J. Receptor for Advanced Glycation End Products (RAGE): A Pivotal Hub in Immune Diseases. Molecules 2022; 27:molecules27154922. [PMID: 35956875 PMCID: PMC9370360 DOI: 10.3390/molecules27154922] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 02/07/2023] Open
Abstract
As a critical molecule in the onset and sustainment of inflammatory response, the receptor for advanced glycation end products (RAGE) has a variety of ligands, such as advanced glycation end products (AGEs), S100/calcium granule protein, and high-mobility group protein 1 (HMGB1). Recently, an increasing number studies have shown that RAGE ligand binding can initiate the intracellular signal cascade, affect intracellular signal transduction, stimulate the release of cytokines, and play a vital role in the occurrence and development of immune-related diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and Alzheimer’s disease. In addition, other RAGE signaling pathways can play crucial roles in life activities, such as inflammation, apoptosis, autophagy, and endoplasmic reticulum stress. Therefore, the strategy of targeted intervention in the RAGE signaling pathway may have significant therapeutic potential, attracting increasing attention. In this paper, through the systematic induction and analysis of RAGE-related signaling pathways and their regulatory mechanisms in immune-related diseases, we provide theoretical clues for the follow-up targeted intervention of RAGE-mediated diseases.
Collapse
Affiliation(s)
- Qing Yue
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Yu Song
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Zi Liu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Lin Zhang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu 241002, China;
| | - Ling Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
| | - Jinlong Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (Q.Y.); (Y.S.); (Z.L.); (L.Y.)
- Correspondence: ; Tel.: +86-0315-8805572
| |
Collapse
|
7
|
Liu N, Liu C, Yang Y, Ma G, Wei G, Liu S, Kong L, Du G. Xiao-Xu-Ming decoction prevented hemorrhagic transformation induced by acute hyperglycemia through inhibiting AGE-RAGE-mediated neuroinflammation. Pharmacol Res 2021; 169:105650. [PMID: 33964468 DOI: 10.1016/j.phrs.2021.105650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/02/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
Stroke is one of the leading causes of death worldwide. Hemorrhagic transformation (HT) is a common serious complication of ischemic stroke (IS) and is related to poor prognosis. Hyperglycemia after stroke is associated with the occurrence of HT and seriously affects the clinical treatment of stroke. Our previous experiments demonstrated that the Xiao-Xu-Ming decoction effective components group (XXMD), which is a Chinese medicine formula reconstituted by active ingredients, has multiple pharmacological effects in the treatment of IS. However, the effects of XXMD on HT after IS remain unclear. Thus, we investigated the preventive effects of XXMD on hyperglycemia-induced HT and further explored the underlying mechanism. Acute hyperglycemia combined with the electrocoagulation cerebral ischemia model was used to establish the HT model. XXMD (37.5, 75, 150 mg/kg/d) was given by gavage for 5 days. Network pharmacology was used to predict potential targets and pathways of XXMD in HT occurrence, and further studies confirmed the related targets. The results showed that hyperglycemia aggravated neurological deficits and blood-brain barrier (BBB) disruption, leading to intracerebral hemorrhage. Pretreatment with XXMD improved neurological function and BBB integrity and inhibited HT occurrence. Network pharmacology revealed that AGE-RAGE-mediated neuroinflammation may be associated with hyperglycemia-induced HT. Further studies confirmed that hyperglycemia activated the AGE-RAGE signaling pathway, increased the expression of HMGB1, TLR4 and p-p65, and induced the release of inflammatory factors and neutrophil infiltration, leading to HT. XXMD could inhibit AGE-RAGE-mediated neuroinflammation. These findings indicated that pretreatment with XXMD alleviated hyperglycemia-induced HT, which may be associated with the inhibition of AGE-RAGE-mediated neuroinflammation. Therefore, XXMD may be a potential therapeutic drug for HT.
Collapse
Affiliation(s)
- Nannan Liu
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Panyu District, Guangdong 510006, PR China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Chengdi Liu
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Yujiao Yang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, PR China
| | - Guodong Ma
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Guangyi Wei
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Panyu District, Guangdong 510006, PR China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Shan Liu
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Panyu District, Guangdong 510006, PR China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Guanhua Du
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 280 Waihuan East Road, Panyu District, Guangdong 510006, PR China; Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
8
|
Bahadar GA, Shah ZA. Intracerebral Hemorrhage and Diabetes Mellitus: Blood-Brain Barrier Disruption, Pathophysiology, and Cognitive Impairments. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:312-326. [PMID: 33622232 DOI: 10.2174/1871527320666210223145112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
There is a surge in diabetes incidence with an estimated 463 million individuals been diagnosed worldwide. Diabetes Mellitus (DM) is a major stroke-related comorbid condition that increases the susceptibility of disabling post-stroke outcomes. Although less common, intracerebral hemorrhage (ICH) is the most dramatic subtype of stroke that is associated with higher mortality, particularly in DM population. Previous studies have focused mainly on the impact of DM on ischemic stroke. Few studies have focused on impact of DM on ICH and discussed the blood-brain barrier disruption, brain edema, and hematoma formation. However, more recently, investigating the role of oxidative damage and reactive oxygen species (ROS) production in preclinical studies involving DM-ICH animal models has gained attention. But, little is known about the correlation between neuroinflammatory processes, glial cells activation, and peripheral immune cell invasion with DM-ICH injury. DM and ICH patients experience impaired abilities in multiple cognitive domains by relatively comparable mechanisms, which could get exacerbated in the setting of comorbidities. In this review, we discuss both the pathology of DM as a comorbid condition for ICH and the potential molecular therapeutic targets for the clinical management of the ICH and its recovery.
Collapse
Affiliation(s)
- Ghaith A Bahadar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614. United States
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614. United States
| |
Collapse
|
9
|
Swami P, Thiyagarajan S, Vidger A, Indurthi VSK, Vetter SW, Leclerc E. RAGE Up-Regulation Differently Affects Cell Proliferation and Migration in Pancreatic Cancer Cells. Int J Mol Sci 2020; 21:E7723. [PMID: 33086527 PMCID: PMC7589276 DOI: 10.3390/ijms21207723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) contributes to many cellular aspects of pancreatic cancer including cell proliferation, migration, and survival. Studies have shown that RAGE activation by its ligands promotes pancreatic tumor growth by stimulating both cell proliferation and migration. In this study, we investigated the effect of RAGE up-regulation on the proliferation and migration of the human pancreatic cancer Panc-1 cell-line. We show that moderate overexpression of RAGE in Panc-1 cells results in increased cell proliferation, but decreased cell migration. The observed cellular changes were confirmed to be RAGE-specific and reversible by using RAGE-specific siRNAs and the small molecule RAGE inhibitor FPS-ZM1. At the molecular level, we show that RAGE up-regulation was associated with decreased activity of FAK, Akt, Erk1/2, and NF-κB signaling pathways and greatly reduced levels of α2 and β1 integrin expression, which is in agreement with the observed decreases in cell migration. We also demonstrate that RAGE up-regulation changes the expression of key molecular markers of epithelial-to-mesenchymal transition (EMT). Our results suggest that in the absence of stimulation by external ligands, RAGE up-regulation can differently modulate cell proliferation and migration in pancreatic cancer cells and regulates partly EMT.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA; (P.S.); (S.T.); (A.V.); (V.S.K.I.); (S.W.V.)
| |
Collapse
|
10
|
The association between plasma HMGB1 and sRAGE and clinical outcome in intracerebral hemorrhage. J Neuroimmunol 2020; 345:577266. [DOI: 10.1016/j.jneuroim.2020.577266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
|
11
|
Lattanzi S, Di Napoli M, Ricci S, Divani AA. Matrix Metalloproteinases in Acute Intracerebral Hemorrhage. Neurotherapeutics 2020; 17:484-496. [PMID: 31975152 PMCID: PMC7283398 DOI: 10.1007/s13311-020-00839-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) accounts for 10-30% of all strokes and affects more than one million people every year worldwide, and it is the stroke subtype associated with the highest rates of mortality and residual disability. So far, clinical trials have mainly targeted primary cerebral injury and have substantially failed to improve clinical outcomes. The understanding of the pathophysiology of early and delayed injury after ICH is, hence, of paramount importance to identify potential targets of intervention and develop effective therapeutic strategies. Matrix metalloproteinases (MMPs) represent a ubiquitous superfamily of structurally related zinc-dependent endopeptidases able to degrade any component of the extracellular matrix. They are upregulated after ICH, in which different cell types, including leukocytes, activated microglia, neurons, and endothelial cells, are involved in their synthesis and secretion. The aim of this review is to summarize the available experimental and clinical evidence about the role of MMPs in brain injury following spontaneous ICH and provide critical insights into the underlying mechanisms.
Collapse
Affiliation(s)
- Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Mario Di Napoli
- Department of Neurology and Stroke Unit, San Camillo de' Lellis District General Hospital, Rieti, Italy
| | - Silvia Ricci
- Department of Neurology and Stroke Unit, San Camillo de' Lellis District General Hospital, Rieti, Italy
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA.
| |
Collapse
|
12
|
Wang S, Xue F, Li W, Shan Y, Gu X, Shen J, Ke K. Increased expression of Triad1 is associated with neuronal apoptosis after intracerebral hemorrhage in adult rats. Int J Neurosci 2020; 130:759-769. [PMID: 31842638 DOI: 10.1080/00207454.2019.1705807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective: It has been demonstrated that Triad1 (2 RING fingers and double RING finger linked 1) negatively regulates myeloid cell growth and induces cell apoptosis. However, its functions in intracerebral hemorrhage (ICH) disease have not been conducted. In this study, the role of Triad1 in rat model of ICH was explored.Methods: We observe an increasing expression of Triad1 in areas adjacent to hematoma after ICH. Immunofluorescence shows that Triad1 is colocalized with neurons, while not microglia or astrocyte, indicates its correlation with neuronal activities following ICH.Results: As neuronal apoptosis is the most crucial event in ICH disease, the expression of active caspase-3 and p53 is also enhanced around the hematoma, which is consistent with Triad1 in expression tendency. In turn, Triad1 depletion in primary cortical neurons decreased the apoptosis of neurons after using Triad1 shRNA.Conclusion: We conclude that inhibition of Triad1 expression might protect the brain from secondary damage following ICH.
Collapse
Affiliation(s)
- Shuyao Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Feng Xue
- Department of Neurology, Qidong Second People's Hospital, Qidong, Jiangsu, People's Republic of China
| | - Wanyan Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yisi Shan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xingxing Gu
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
13
|
Szczepanik JC, Garcia AF, Lopes de Almeida GR, Cunha MP, Dafre AL. Protective effects against memory impairment induced by methylglyoxal in mice co-treated with FPS-ZM1, an advanced glycation end products receptor antagonist. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Targeting high-mobility group box protein 1 (HMGB1) in pediatric traumatic brain injury: Chronic neuroinflammatory, behavioral, and epileptogenic consequences. Exp Neurol 2019; 320:112979. [DOI: 10.1016/j.expneurol.2019.112979] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022]
|
15
|
Bobinger T, Burkardt P, B Huttner H, Manaenko A. Programmed Cell Death after Intracerebral Hemorrhage. Curr Neuropharmacol 2018; 16:1267-1281. [PMID: 28571544 PMCID: PMC6251052 DOI: 10.2174/1570159x15666170602112851] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 06/01/2017] [Indexed: 01/01/2023] Open
Abstract
Background: Intracerebral hemorrhage (ICH) accounts for up to 15% of all strokes and is characterized by high rates of mortality and morbidity. The post-ICH brain injury can be distinguished in 1) primary, which are caused by disrup-tion and mechanical deformation of brain tissue due to hematoma growth and 2) secondary, which are induced by microglia activation, mitochondrial dysfunction, neurotransmitter and inflammatory mediator release. Although these events typically lead to necrosis, the occurrence of programmed cell death has also been reported after ICH. Methods: We reviewed recent publications describing advance in pre- and clinic ICH research. Results: At present, treatment of ICH patients is based on oral anticoagulant reversal, management of blood pressure and other medical complications. Several pre-clinical studies showed promising results and demonstrated that anti-oxidative and anti-inflammatory treatments reduced neuronal cell death, however, to date, all of these attempts have failed in randomized controlled clinical trials. Yet, the time frame of administration may be crucial in translation from animal to clinical studies. Furthermore, the latest pre-clinical research points toward the existence of other, apoptosis-unrelated forms kinds of pro-grammed cell death. Conclusion: Our review summarizes current knowledge of pathways leading to programmed cell death after ICH in addition to data from clinical trials. Some of the pre-clinical results have not yet demonstrated clinical confirmation, however they sig-nificantly contribute to our understanding of post-ICH pathology and can contribute to development of new therapeutic ap-proaches, decreasing mortality and improving ICH patients’ quality of life.
Collapse
Affiliation(s)
- Tobias Bobinger
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Petra Burkardt
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Hagen B Huttner
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Anatol Manaenko
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen 91054, Germany
| |
Collapse
|
16
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
17
|
Mu SW, Dang Y, Wang SS, Gu JJ. The role of high mobility group box 1 protein in acute cerebrovascular diseases. Biomed Rep 2018; 9:191-197. [PMID: 30271593 PMCID: PMC6158396 DOI: 10.3892/br.2018.1127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
The occurrence and development of acute cerebrovascular diseases involves an inflammatory response, and high mobility group box protein 1 (HMGB1) is a pro-inflammatory factor that is expressed not only in the early-injury stage of disease, but also during the post-repair process. In the initial stage of disease, HMGB1 is released into the outside of the cell to participate in the cascade amplification reaction of inflammation, causing vasospasm, destruction of the blood-brain barrier and apoptosis of nerve cells. In the recovery stage of disease, HMGB1 can promote tissue repair and remodeling, which can aid in nerve function recovery. This review summarizes the biological characteristics of HMGB1, and the role of HMGB1 in ischemic and hemorrhagic cerebrovascular disease, and cerebral venous thrombosis.
Collapse
Affiliation(s)
- Shu-Wen Mu
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| | - Yuan Dang
- Department of Comparative Medicine, Dongfang Affiliated Hospital of Xiamen University, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| | - Shou-Sen Wang
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| | - Jian-Jun Gu
- Department of Neuro-interventional Radiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
18
|
Feng MJ, Ning WB, Wang W, Lv ZH, Liu XB, Zhu Y, Gao W, Jin HZ, Gao SS. Serum S100A12 as a prognostic biomarker of severe traumatic brain injury. Clin Chim Acta 2018; 480:84-91. [DOI: 10.1016/j.cca.2018.01.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
|
19
|
Dong YF, Guo RB, Ji J, Cao LL, Zhang L, Chen ZZ, Huang JY, Wu J, Lu J, Sun XL. S1PR3 is essential for phosphorylated fingolimod to protect astrocytes against oxygen-glucose deprivation-induced neuroinflammation via inhibiting TLR2/4-NFκB signalling. J Cell Mol Med 2018. [PMID: 29536648 PMCID: PMC5980137 DOI: 10.1111/jcmm.13596] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fingolimod (FTY720) is used as an immunosuppressant for multiple sclerosis. Numerous studies indicated its neuroprotective effects in stroke. However, the mechanism remains to be elucidated. This study was intended to investigate the mechanisms of phosphorylated FTY720 (pFTY720), which was the principle active molecule in regulating astrocyte‐mediated inflammatory responses induced by oxygen‐glucose deprivation (OGD). Results demonstrated that pFTY720 could protect astrocytes against OGD‐induced injury and inflammatory responses. It significantly decreased pro‐inflammatory cytokines, including high mobility group box 1 (HMGB1) and tumour necrosis factor‐α (TNF‐α). Further, studies displayed that pFTY720 could prevent up‐regulation of Toll‐like receptor 2 (TLR2), phosphorylation of phosphoinositide 3‐kinase (PI3K) and nuclear translocation of nuclear factor kappa B (NFκB) p65 subunit caused by OGD. Sphingosine‐1‐phosphate receptor 3 (S1PR3) knockdown could reverse the above change. Moreover, administration of TLR2/4 blocker abolished the protective effects of pFTY720. Taken together, this study reveals that pFTY720 depends on S1PR3 to protect astrocytes against OGD‐induced neuroinflammation, due to inhibiting TLR2/4‐PI3K‐NFκB signalling pathway.
Collapse
Affiliation(s)
- Yin-Feng Dong
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China.,School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ruo-Bing Guo
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu-Lu Cao
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ling Zhang
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheng-Zhen Chen
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ji-Ye Huang
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Wu
- Department of Internal Neurology, the Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Jun Lu
- College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Serum S100A12 and 30-day mortality after acute intracerebral hemorrhage. Clin Chim Acta 2018; 477:1-6. [DOI: 10.1016/j.cca.2017.11.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022]
|
21
|
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand pattern recognition receptor implicated in diverse chronic inflammatory states. RAGE binds and mediates the cellular response to a range of damage-associated molecular pattern molecules (DAMPs) including AGEs, HMGB1, S100s, and DNA. RAGE can also act as an innate immune sensor of microbial pathogen-associated molecular pattern molecules (PAMPs) including bacterial endotoxin, respiratory viruses, and microbial DNA. RAGE is expressed at low levels under normal physiology, but it is highly upregulated under chronic inflammation because of the accumulation of various RAGE ligands. Blocking RAGE signaling in cell and animal models has revealed that targeting RAGE impairs inflammation and progression of diabetic vascular complications, cardiovascular disease (CVD), and cancer progression and metastasis. The clinical relevance of RAGE in inflammatory disease is being demonstrated in emerging clinical trials of novel small-molecule RAGE inhibitors.
Collapse
Affiliation(s)
- Barry I Hudson
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136, USA; .,University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida 33136, USA
| | - Marc E Lippman
- University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida 33136, USA.,Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136, USA;
| |
Collapse
|
22
|
Lewis JB, Mejia C, Jordan C, Monson TD, Bodine JS, Dunaway TM, Egbert KM, Lewis AL, Wright TJ, Ogden KC, Broberg DS, Hall PD, Nelson SM, Hirschi KM, Reynolds PR, Arroyo JA. Inhibition of the receptor for advanced glycation end-products (RAGE) protects from secondhand smoke (SHS)-induced intrauterine growth restriction IUGR in mice. Cell Tissue Res 2017; 370:513-521. [PMID: 28948356 DOI: 10.1007/s00441-017-2691-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/29/2017] [Indexed: 01/20/2023]
Abstract
Intrauterine growth restriction (IUGR) is a disease affecting 10% of all pregnancies. IUGR is associated with maternal, fetal, or placental abnormalities. Studies investigating the effects of secondhand smoke (SHS) exposure and IUGR are limited. The receptor for advanced glycation end-products (RAGE) is a pro-inflammatory transmembrane receptor increased by SHS in the placenta. We tested the hypothesis that inhibition of RAGE during SHS exposure protects from smoke-induced IUGR. C57BL/6 mice were exposed to SHS or SHS + semi-synthetic glycosaminoglycan ethers (SAGEs) known to inhibit RAGE signaling. Trophoblast cells were treated with cigarette smoke extract (CSE) with or without SAGEs in order to address the effects of RAGE inhibition during trophoblast invasion in vitro. SHS-treated mice demonstrated a significant reduction in fetal weight (7.35-fold, P ≤ 0.0001) and placental weight (1.13-fold, P ≤ 0.0001) compared with controls. Mice co-treated with SHS and SAGEs were protected from SHS-induced fetal weights decreases. SHS treatment of C57BL/6 mice activated placental extracellular signal-regulated kinase (ERK) (3.0-fold, P ≤ 0.05), JNK (2.4-fold, P ≤ 0.05) and p38 (2.1-fold, P ≤ 0.05) and the expression of inflammatory mediators including TNF-α (1.34-fold, P ≤ 0.05) and IL-1β (1.03-fold, P ≤ 0.05). SHS-mediated activation of these molecules was reduced to basal levels when SAGE was co-administered. Invasion of trophoblast cells decreased 92% (P < 0.002) when treated with CSE and CSE-mediated invasion was completely reversed by SAGEs. We conclude that RAGE inhibition protects against fetal weight loss during SHS-induced IUGR. These studies provide insight into tobacco-mediated IUGR development and clarify avenues that may be helpful in the alleviation of placental complications.
Collapse
Affiliation(s)
- Joshua B Lewis
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Camilo Mejia
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Clinton Jordan
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Troy D Monson
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Jared S Bodine
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Todd M Dunaway
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Kaleb M Egbert
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Adam L Lewis
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Tanner J Wright
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - K Connor Ogden
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Dallin S Broberg
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Parker D Hall
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Shawn M Nelson
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Kelsey M Hirschi
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Paul R Reynolds
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA
| | - Juan A Arroyo
- Lung and Placental Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3052 LSB, Provo, UT, 84602, USA.
| |
Collapse
|
23
|
Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol 2017; 13:420-433. [PMID: 28524175 PMCID: PMC5575938 DOI: 10.1038/nrneurol.2017.69] [Citation(s) in RCA: 554] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracerebral haemorrhage (ICH) is the most lethal subtype of stroke but currently lacks effective treatment. Microglia are among the first non-neuronal cells on the scene during the innate immune response to ICH. Microglia respond to acute brain injury by becoming activated and developing classic M1-like (proinflammatory) or alternative M2-like (anti-inflammatory) phenotypes. This polarization implies as yet unrecognized actions of microglia in ICH pathology and recovery, perhaps involving microglial production of proinflammatory or anti-inflammatory cytokines and chemokines. Furthermore, alternatively activated M2-like microglia might promote phagocytosis of red blood cells and tissue debris, a major contribution to haematoma clearance. Interactions between microglia and other cells modulate microglial activation and function, and are also important in ICH pathology. This Review summarizes key studies on modulators of microglial activation and polarization after ICH, including M1-like and M2-like microglial phenotype markers, transcription factors and key signalling pathways. Microglial phagocytosis, haematoma resolution, and the potential crosstalk between microglia and T lymphocytes, neurons, astrocytes, and oligodendrocytes in the ICH brain are described. Finally, the clinical and translational implications of microglial polarization in ICH are presented, including the evidence that therapeutic approaches aimed at modulating microglial function might mitigate ICH injury and improve brain repair.
Collapse
Affiliation(s)
- Xi Lan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Qian Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| |
Collapse
|
24
|
Wang D, Liu K, Wake H, Teshigawara K, Mori S, Nishibori M. Anti-high mobility group box-1 (HMGB1) antibody inhibits hemorrhage-induced brain injury and improved neurological deficits in rats. Sci Rep 2017; 7:46243. [PMID: 28393932 PMCID: PMC5385548 DOI: 10.1038/srep46243] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
As one of the most lethal stroke subtypes, intracerebral hemorrhage (ICH) is acknowledged as a serious clinical problem lacking effective treatment. Available evidence from preclinical and clinical studies suggests that inflammatory mechanisms are involved in the progression of ICH-induced secondary brain injury. High mobility group box-1 (HMGB1) is a ubiquitous and abundant nonhistone DNA-binding protein, and is also an important proinflammatory molecule once released into the extracellular space from the nuclei. Here, we show that treatment with neutralizing anti-HMGB1 mAb (1 mg/kg, i.v. twice) remarkably ameliorated ICH-injury induced by local injection of collagenase IV in the striatum of rats. Administration of anti-HMGB1 mAb inhibited the release of HMGB1 into the extracellular space in the peri-hematomal region, reduced serum HMGB1 levels and decreased brain edema by protecting blood-brain barrier integrity, in association with decreased activated microglia and the expression of inflammation-related factors at 24 h after ICH. Consequently, anti-HMGB1 mAb reduced the oxidative stress and improved the behavioral performance of rats. These results strongly indicate that HMGB1 plays a critical role in the development of ICH-induced secondary injury through the amplification of plural inflammatory responses. Intravenous injection of neutralizing anti-HMGB1 mAb has potential as a novel therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuji Mori
- School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
25
|
Notsu M, Kanazawa I, Takeno A, Yokomoto-Umakoshi M, Tanaka KI, Yamaguchi T, Sugimoto T. Advanced Glycation End Product 3 (AGE3) Increases Apoptosis and the Expression of Sclerostin by Stimulating TGF-β Expression and Secretion in Osteocyte-Like MLO-Y4-A2 Cells. Calcif Tissue Int 2017; 100:402-411. [PMID: 28229177 DOI: 10.1007/s00223-017-0243-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
Advanced glycation end products (AGEs) cause bone fragility due to deterioration in bone quality. We previously reported that AGE3 induced apoptosis and inhibited differentiation via increased transforming growth factor (TGF)-β signaling in osteoblastic cells. Additionally, we demonstrated that AGE3 increased apoptosis and sclerostin expression and decreased receptor activator of nuclear factor-κB ligand (RANKL) expression in osteocyte-like cells. However, it remains unclear whether TGF-β signaling is involved in the effects of AGEs on apoptosis and the expression of sclerostin and RANKL in osteocytes. Effects of AGE3 on apoptosis of mouse osteocyte-like MLO-Y4-A2 cells were examined by DNA fragmentation ELISA. Expression of TGF-β, sclerostin, and RANKL was evaluated using real-time PCR, Western blotting, and ELISA kits. To block TGF-β signaling, we used SD208, a TGF-β type I receptor kinase inhibitor. AGE3 (200 µg/mL) significantly increased apoptosis and mRNA expression of Sost, the gene encoding sclerostin, and decreased Rankl mRNA expression in MLO-Y4-A2 cells. AGE3 significantly increased the expression of TGF-β. Co-incubation of SD208 with AGE3 significantly rescued AGE3-induced apoptosis in a dose-dependent manner. Moreover, SD208 restored AGE3-increased mRNA and protein expression of sclerostin. In contrast, SD208 did not affect AGE3-decreased mRNA and protein expression of RANKL. These findings suggest that AGE3 increases apoptosis and sclerostin expression through increasing TGF-β expression in osteocytes, and that AGE3 decreases RANKL expression independent of TGF-β signaling.
Collapse
Affiliation(s)
- Masakazu Notsu
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Ippei Kanazawa
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Ayumu Takeno
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Maki Yokomoto-Umakoshi
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Ken-Ichiro Tanaka
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Toru Yamaguchi
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Toshitsugu Sugimoto
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
26
|
Lian YJ, Gong H, Wu TY, Su WJ, Zhang Y, Yang YY, Peng W, Zhang T, Zhou JR, Jiang CL, Wang YX. Ds-HMGB1 and fr-HMGB induce depressive behavior through neuroinflammation in contrast to nonoxid-HMGB1. Brain Behav Immun 2017; 59:322-332. [PMID: 27647532 DOI: 10.1016/j.bbi.2016.09.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 02/08/2023] Open
Abstract
High mobility group box 1 (HMGB1) has been implicated as a key factor in several neuroinflammatory conditions. Our previous study suggested that the release of central HMGB1 acts as a late-phase mediator in lipopolysaccharide (LPS)-induced depression. Recent findings indicate that the redox state of HMGB1 is a critical determinant of its immunomodulatory properties. Here, we aimed to investigate the potential mechanisms that link the redox states of HMGB1 to depression in mice. Distinct redox forms of recombinant HMGB1 (rHMGB1) were used that included fully reduced HMGB (fr-HMGB1), which acted as a chemokine, and disulfide-HMGB1 (ds-HMGB1), which possessed cytokine activity. Fr-HMGB1 in vivo was partially oxidized into ds-HMGB1; thus, the mutant protein non-oxidizable chemokine-HMGB (nonoxid-HMGB1) was applied. Concurrent with depressive behavior induced by four-week stress exposure, the HMGB1 concentrations in the serum and cerebral cortex substantially increased. Therefore, a single dose of rHMGB1 (200ng/5μl/mice) or vehicle was administered to mice via intracerebroventricular (i.c.v.) injection. The receptor inhibitors of TLR4/RAGE/CXCR4 (TAK-242/FPS-ZM1/AMD3100) (3mg/kg) were intraperitoneally injected 30min prior to rHMGB1 treatment. Depressive-like behavior was measured 20h post i.c.v. injection. Administration of fr-HMGB1 prolonged the immobility duration in the tail suspension test (TST) and decreased sucrose preference. In addition to depressive behavior, the hippocampal TNF-α protein slightly increased. These depressive behaviors and upregulation of hippocampal TNF-α were alleviated or abrogated by pretreatment with the inhibitors AMD3100, FPS-ZM1, and TAK-242. Alternatively, nonoxid-HMGB1 failed to induce TNF-α protein or prolong the immobility duration. As expected, ds-HMGB1 administration substantially upregulated hippocampal TNF-α protein, increased the immobility time in the TST and decreased sucrose preference. Moreover, both glycyrrhizin and TAK-242 improved ds-HMGB1-induced depressive behavior. Furthermore, TAK-242 significantly blocked the upregulation of hippocampal TNF-α protein and protected hippocampal myelin basic protein from ds-HMGB1-induced reduction. These drugs had no effect on the total or central distance in the open field test. Collectively, this initial experiment demonstrates the role and receptor mechanisms of HMGB1 under different redox states on the induction of depressive-like behavior. Both ds-HMGB1 and fr-HMGB1 may induce depressive-like behavior in vivo mainly via neuroinflammatory response activation.
Collapse
Affiliation(s)
- Yong-Jie Lian
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Hong Gong
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Teng-Yun Wu
- Team of Aviation Physical Examination, Air Force General Hospital of PLA, Beijing 100142, PR China
| | - Wen-Jun Su
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Yi Zhang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Yuan-Yuan Yang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Wei Peng
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Ting Zhang
- Department of Navy Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Jiang-Rui Zhou
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Chun-Lei Jiang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China
| | - Yun-Xia Wang
- Lab of Stress Medicine, Department of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, PR China.
| |
Collapse
|
27
|
Yang R, Zhu S, Tonnessen TI. Ethyl pyruvate is a novel anti-inflammatory agent to treat multiple inflammatory organ injuries. JOURNAL OF INFLAMMATION-LONDON 2016; 13:37. [PMID: 27980458 PMCID: PMC5135784 DOI: 10.1186/s12950-016-0144-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/18/2016] [Indexed: 12/19/2022]
Abstract
Ethyl pyruvate (EP) is a simple derivative of pyruvic acid, which is an important endogenous metabolite that can scavenge reactive oxygen species (ROS). Treatment with EP is able to ameliorate systemic inflammation and multiple organ dysfunctions in multiple animal models, such as acute pancreatitis, alcoholic liver injury, acute respiratory distress syndrome (ARDS), acute viral myocarditis, acute kidney injury and sepsis. Recent studies have demonstrated that prolonged treatment with EP can ameliorate experimental ulcerative colitis and slow multiple tumor growth. It has become evident that EP has pharmacological anti-inflammatory effect to inhibit multiple early inflammatory cytokines and the late inflammatory cytokine HMGB1 release, and the anti-tumor activity is likely associated with its anti-inflammatory effect. EP has been tested in human volunteers and in a clinical trial of patients undergoing cardiac surgery in USA and shown to be safe at clinical relevant doses, even though EP fails to improve outcome of the heart surgery, EP is still a promising agent to treat patients with multiple inflammatory organ injuries and the other clinical trials are on the way. This review focuses on how EP is able to ameliorate multiple organ injuries and summarize recently published EP investigations. The targets of the anti-inflammatory agent EP ![]()
Collapse
Affiliation(s)
- Runkuan Yang
- Department of Intensive Care Medicine, Tampere University Hospital, University of Tampere, 10 Bio katu, Tampere, 33014 Finland ; Department of Critical Care Medicine, University of Pittsburgh Medical School, 3550 Terrace Street, Pittsburgh, PA 15261 USA ; Department of Emergencies and Critical Care, Rikshospital of Oslo University, PO Box 4950, Nydalen, Oslo 0424 Norway
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Beijing, 100050 China
| | - Tor Inge Tonnessen
- Department of Emergencies and Critical Care, Rikshospital of Oslo University, PO Box 4950, Nydalen, Oslo 0424 Norway ; Institute for Clinical Medicine, University of Oslo, Blindern, Oslo 0316 Norway
| |
Collapse
|
28
|
Ugrinova I, Pasheva E. HMGB1 Protein: A Therapeutic Target Inside and Outside the Cell. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:37-76. [PMID: 28215228 DOI: 10.1016/bs.apcsb.2016.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-mobility group box 1 protein (HMGB1) is a nonhistone chromosomal protein discovered more than 30 years ago. It is an abundant nuclear protein that has a dual function-in the nucleus, it binds DNA and participates in practically all DNA-dependent processes serving as an architectural factor. Outside the cell, HMGB1 plays a different role-it acts as an alarmine that activates a large number of HMGB1-"competent" cells and mediates a broad range of physiological and pathological responses. This universality makes it an attractive target for innovative therapeutic strategies in the treatment of various diseases. Here we present an overview of the major nuclear and extracellular properties of HMGB1 and describe its interaction with different molecular partners as specific receptors or inhibitors, which are important for its role as a target in multiple diseases. We highlight its pivotal role as a target for cancer treatment at two aspects: first in terms of its substantial impact on the repair capacity of cancer cells, thus affecting the effectiveness of chemotherapy with the antitumor drug cis-platinum and, second, the possibility to be targeted by microRNAs influencing different pathways of human diseases, thus making it a promising candidate for a new strategy for therapeutic interventions against various pathological conditions but mainly cancer.
Collapse
Affiliation(s)
- I Ugrinova
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - E Pasheva
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
29
|
Askenase MH, Sansing LH. Stages of the Inflammatory Response in Pathology and Tissue Repair after Intracerebral Hemorrhage. Semin Neurol 2016; 36:288-97. [PMID: 27214704 DOI: 10.1055/s-0036-1582132] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Intracerebral hemorrhage (ICH) is a major health concern, with high rates of mortality and morbidity and no highly effective clinical interventions. Basic research in animal models of ICH has provided insight into its complex pathology, in particular revealing the role of inflammation in driving neuronal death and neurologic deficits after hemorrhage. The response to ICH occurs in four distinct phases: (1) initial tissue damage and local activation of inflammatory factors, (2) inflammation-driven breakdown of the blood-brain barrier, (3) recruitment of circulating inflammatory cells and subsequent secondary immunopathology, and (4) engagement of tissue repair responses that promote tissue repair and restoration of neurologic function. The development of CNS inflammation occurs over many days after initial hemorrhage and thus may represent an ideal target for treatment of the disease, but further research is required to identify the mechanisms that promote engagement of inflammatory versus anti-inflammatory pathways. In this review, the authors examine how experimental models of ICH have uncovered critical mediators of pathology in each of the four stages of the inflammatory response, and focus on the role of the immune system in these processes.
Collapse
Affiliation(s)
- Michael H Askenase
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Lauren H Sansing
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
30
|
Jiang C, Zuo F, Wang Y, Wan J, Yang Z, Lu H, Chen W, Zang W, Yang Q, Wang J. Progesterone exerts neuroprotective effects and improves long-term neurologic outcome after intracerebral hemorrhage in middle-aged mice. Neurobiol Aging 2016; 42:13-24. [PMID: 27143417 DOI: 10.1016/j.neurobiolaging.2016.02.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/27/2016] [Accepted: 02/28/2016] [Indexed: 11/26/2022]
Abstract
In this study, we examined the effect of progesterone on histopathologic and functional outcomes of intracerebral hemorrhage (ICH) in 10- to 12-month-old mice. Progesterone or vehicle was administered by intraperitoneal injection 1 hour after collagenase-induced ICH and then by subcutaneous injections at 6, 24, and 48 hours. Oxidative and nitrosative stress were assayed at 12 hours post-ICH. Injury markers were examined on day 1, and lesion was examined on day 3. Neurologic deficits were examined for 28 days. Progesterone posttreatment reduced lesion volume, brain swelling, edema, and cell degeneration and improved long-term neurologic function. These protective effects were associated with reductions in protein carbonyl formation, protein nitrosylation, and matrix metalloproteinase-9 activity and attenuated cellular and molecular inflammatory responses. Progesterone also reduced vascular endothelial growth factor expression, increased neuronal-specific Na(+)/K(+) ATPase ɑ3 subunit expression, and reduced protein kinase C-dependent Na(+)/K(+) ATPase phosphorylation. Furthermore, progesterone reduced glial scar thickness, myelin loss, brain atrophy, and residual injury volume on day 28 after ICH. With multiple brain targets, progesterone warrants further investigation for its potential use in ICH therapy.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China; Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| | - Fangfang Zuo
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Yuejuan Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Jieru Wan
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Zengjin Yang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wenwu Chen
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Weidong Zang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Jian Wang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|