1
|
Abe K, Okada S, Ishijima T. The activities of the ILSI Japan endowed chair, at the University of Tokyo, regarding functional food genomics. Nutr Rev 2020; 78:35-39. [PMID: 33259622 DOI: 10.1093/nutrit/nuaa090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Keiko Abe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinji Okada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoko Ishijima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Stratford JM, Larson ED, Yang R, Salcedo E, Finger TE. 5-HT 3A -driven green fluorescent protein delineates gustatory fibers innervating sour-responsive taste cells: A labeled line for sour taste? J Comp Neurol 2017; 525:2358-2375. [PMID: 28316078 DOI: 10.1002/cne.24209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 12/29/2022]
Abstract
Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT3 receptors on the gustatory nerves. We show here, using 5-HT3A GFP mice, that 5-HT3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus.
Collapse
Affiliation(s)
- J M Stratford
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - E D Larson
- Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado.,Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - R Yang
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - E Salcedo
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - T E Finger
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|