1
|
Liu T, Lai X, Guo P, Zhang W, Zhang G, Wu M, Xue G, Fang X, Peng J, Lai W. Sensitive lateral flow immunoassay strips based on Fe 3+-chelated polydopamine nanospheres for the detection of kanamycin. Food Chem 2023; 411:135511. [PMID: 36701914 DOI: 10.1016/j.foodchem.2023.135511] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
As kanamycin (KAN) residue in animal products is harmful to consumers, a rapid and sensitive method for KAN detection needs to be established. KAN monoclonal antibody (KAN-mAb, 1D11) with the half maximal inhibitory concentration of 1.16 ng/mL was prepared in this study. A one-pot method was used to synthesize Fe3+-chelated polydopamine nanospheres (Fe@PDANs) with excellent characteristics of strong light absorption. The novel label of Fe@PDANs and KAN-mAb was used to develop a lateral flow immunoassay (LFIA) for the sensitive detection of KAN. The limit of detection of the Fe@PDANs-based LFIA (Fe@PDANs-LFIA) for KAN was 0.0191 ng/mL, which was 2.75 times lower than PDANs-based LFIA. Furthermore, the Fe@PDANs-LFIA was successfully applied to detect KAN in pork, milk, and honey samples, with recoveries ranging from 93.75% to 113.80% (coefficient of variation < 10%). Therefore, Fe@PDANs have potential for the detection of analytes in LFIA.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaocui Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ping Guo
- Jiangxi General Institute of Testing and Certification, Nanchang 330029, China
| | - Wei Zhang
- Jiangxi General Institute of Testing and Certification, Nanchang 330029, China
| | - Gan Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mengyun Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guangjian Xue
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xuechen Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
Tao L, Segil N. CDK2 regulates aminoglycoside-induced hair cell death through modulating c-Jun activity: Inhibiting CDK2 to preserve hearing. Front Mol Neurosci 2022; 15:1013383. [PMID: 36311033 PMCID: PMC9606710 DOI: 10.3389/fnmol.2022.1013383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Sensory hair cell death caused by the ototoxic side effects of many clinically used drugs leads to permanent sensorineural hearing loss in patients. Aminoglycoside antibiotics are widely used and well-known for their ototoxicity, but the molecular mechanisms of aminoglycoside-induced hair cell death are not well understood. This creates challenges in our attempts to alleviate or prevent such adverse side effects. Here, we report a regulatory role of CDK2 in aminoglycoside-induced hair cell death. Utilizing organotypic cultures of cochleae from neonatal mice, we show that blocking CDK2 activity by either pharmaceutical inhibition or by Cdk2 gene knockout protects hair cells against the ototoxicity of gentamicin—one of the most commonly used aminoglycoside antibiotics—by interfering with intrinsic programmed cell death processes. Specifically, we show that CDK2 inhibition delays the collapse of mitochondria and the activation of a caspase cascade. Furthermore, at the molecular level, inhibition of CDK2 activity influences proapoptotic JNK signaling by reducing the protein level of c-Jun and suppressing the gentamicin-induced upregulation of c-Jun target genes Jun and Bim. Our in vivo studies reveal that Cdk2 gene knockout animals are significantly less sensitive to gentamicin ototoxicity compared to wild-type littermates. Altogether, our work ascertains the non-cell cycle role of CDK2 in regulating aminoglycoside-induced hair cell apoptosis and sheds lights on new potential strategies for hearing protection against ototoxicity.
Collapse
Affiliation(s)
- Litao Tao
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- USC Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Litao Tao,
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- USC Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Wu L, Chen M, Li M, Wang Y, Li Y, Zheng L, Ke Z, Liu K, Qiao Y, Shi X. Oridonin alleviates kanamycin-related hearing loss by inhibiting NLRP3/caspase-1/gasdermin D-induced inflammasome activation and hair cell pyroptosis. Mol Immunol 2022; 149:66-76. [PMID: 35749835 DOI: 10.1016/j.molimm.2022.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/27/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Aminoglycoside antibiotic drugs induce hearing loss in children and adults every year; however, the pathological mechanisms remain unknown. Previous studies have shown that the accumulation of reactive oxygen species (ROS) and inflammation in the inner ear may be responsible for kanamycin (KM)-induced hair cell death and hearing loss. Nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) is a specific ROS sensor that initiates inflammasome assembly as well as activates caspase-1 and downstream inflammatory factors. Therefore, this study aimed to determine whether NLRP3 inflammasomes are involved in KM-related hearing loss in mice. Compared with the control (saline) group, increased levels of activated caspase-1, interleukin (IL)-1β, IL-18, N-terminal fragment of gasdermin D (GSDMD-N), and NLRP3 were detected by immunofluorescence, western blot, and enzyme-linked immunosorbent assay (ELISA) in the KM-plus-furosemide (LASIX)-treated group. Moreover, we also found that the NLRP3 inhibitor oridonin (Ori) could significantly rescue KM-related hearing loss by inhibiting NLRP3-inflammasome activation and caspase-1/GSDMD-related hair cell pyroptosis. These findings demonstrate that apoptosis, as well as pyroptosis, may be involved in KM-related hearing loss and that the NLRP3/caspase-1/GSDMD pathway may be a new target for treating aminoglycoside-induced hearing loss.
Collapse
Affiliation(s)
- Liyuan Wu
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221004, PR China; Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China; The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, PR China
| | - Mengbing Chen
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, PR China; The Fourth Central Hospital of Baoding City, Baoding 072350, PR China
| | - Menghua Li
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, PR China
| | - Yifeng Wang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, PR China
| | - Yalan Li
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221004, PR China; Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Liting Zheng
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221004, PR China; Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Zhaoyang Ke
- The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, PR China
| | - Ke Liu
- Beijing Friendship Hospital, Capital Medical University, Beijing 100000, PR China.
| | - Yuehua Qiao
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221004, PR China; Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China.
| | - Xi Shi
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221004, PR China; Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China.
| |
Collapse
|
4
|
E2F1 Expression and Apoptosis Initiation in Crayfish and Rat Peripheral Neurons and Glial Cells after Axonal Injury. Int J Mol Sci 2022; 23:ijms23084451. [PMID: 35457270 PMCID: PMC9026502 DOI: 10.3390/ijms23084451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Neurotrauma is among the main causes of human disability and mortality. The transcription factor E2F1 is one of the key proteins that determine the fate of cells. The involvement of E2F1 in the regulation of survival and death of peripheral nerve cells after axotomy has not been previously studied. We, for the first time, studied axotomy-induced changes in the expression and localization of E2F1 following axonal injury in rats and crayfish. Immunoblotting and immunofluorescence microscopy were used for the analysis of the expression and intracellular localization of E2F1 and its changes after axotomy. To evaluate whether this transcription factor promotes cell apoptosis, we examined the effect of pharmacological inhibition of E2F activity in axotomized rat models. In this work, axotomy caused increased expression of E2F1 as early as 4 h and even 1 h after axotomy of mechanoreceptor neurons and ganglia of crayfish ventral nerve cord (VNC), as well as rat dorsal root ganglia (DRG). The level of E2F1 expression increased both in the cytoplasm and the nuclei of neurons. Pharmacological inhibition of E2F demonstrated a pronounced neuroprotective activity against axotomized DRGs. E2F1 and downstream targets could be considered promising molecular targets for the development of potential neuroprotective agents.
Collapse
|
5
|
Shen Y, Hu H, Fan C, Wang Q, Zou T, Ye B, Xiang M. Sensorineural hearing loss may lead to dementia-related pathological changes in hippocampal neurons. Neurobiol Dis 2021; 156:105408. [PMID: 34082124 DOI: 10.1016/j.nbd.2021.105408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 01/23/2023] Open
Abstract
Presbycusis contributes to cognitive decline and Alzheimer's disease. However, most research in this area involves clinical observations and statistical modeling, and few studies have examined the relationship between hearing loss and the molecular changes that lead to cognitive dysfunction. The present study investigated whether hearing loss contributes to dementia in the absence of aging and noise using a mouse model of severe bilateral hearing loss induced by kanamycin (1000 mg/kg) and furosemide (400 mg/kg). Immunohistochemistry, silver staining, immunofluorescence analysis, and Western blotting were used to observe pathological changes in different regions of the hippocampus in animals with hearing loss. Changes in the cognitive function of animals with hearing loss were assessed using the Morris water maze test. The results showed that neurons began to degenerate 60 days after hearing loss, and this degeneration was accompanied by structural disorganization and decreased neurogenesis. The level of phosphorylated tau increased over time. Increases in escape latency and distance traveled during the training phase of the Morris water maze test were observed 90 days after hearing loss. Activated microglia and astrocytes with increased levels of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were detected in the hippocampus. These results suggest that hearing loss alone causes neuronal degeneration, inhibition of neurogenesis, increased tau protein phosphorylation, and increased neuroinflammation in the hippocampus. Early intervention in individuals with hearing loss may reduce the risk of cognitive decline.
Collapse
Affiliation(s)
- Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
6
|
Does Calcium Dobesilate Have Therapeutic Effect on Gentamicin-induced Cochlear Nerve Ototoxicity? An Experimental Study. Otol Neurotol 2020; 41:e1185-e1192. [PMID: 32976341 DOI: 10.1097/mao.0000000000002820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS The ototoxic effects of aminoglycosides are well known. Gentamicin carries a substantial risk of hearing loss. Gentamicin is widely used to combat life-threatening infections, despite its ototoxic effects. Calcium dobesilate is a pharmacologically active agent used to treat many disorders due to its vasoprotective and antioxidant effects. We investigated the therapeutic role of calcium dobesilate against gentamicin-induced cochlear nerve ototoxicity in an animal model. METHODS Thirty-two Sprague Dawley rats were divided into four groups: Gentamicin, Gentamicin + Calcium Dobesilate, Calcium Dobesilate, and Control. Preoperative and postoperative hearing thresholds were determined using auditory brainstem response thresholds with click and 16-kHz tone-burst stimuli. Histological analysis of the tympanic bulla specimens was performed under light and transmission electron microscopy. The histological findings were subjected to semiquantitative grading, of which the results were compared between the groups. RESULTS Gentamicin + Calcium Dobesilate group had, on average, 27 dB better click-evoked hearing than Gentamicin group (p < 0.01), whereas the difference was not significant with 16-kHz tone-burst stimuli (p > 0.01). Histologically examining the Control and Calcium Dobesilate groups revealed normal ultrastructural appearances. The Gentamicin group showed the most severe histological alterations including myelin destruction, total axonal degeneration, and edema. The histological evidence of damage was significantly reduced in the Gentamicin + Calcium Dobesilate group compared with the Gentamicin group. CONCLUSION Adding oral calcium dobesilate to systemic gentamicin was demonstrated to exert beneficial effects on click-evoked hearing thresholds, as supported by the histological findings.
Collapse
|
7
|
Cheng C, Wang Y, Guo L, Lu X, Zhu W, Muhammad W, Zhang L, Lu L, Gao J, Tang M, Chen F, Gao X, Li H, Chai R. Age-related transcriptome changes in Sox2+ supporting cells in the mouse cochlea. Stem Cell Res Ther 2019; 10:365. [PMID: 31791390 PMCID: PMC6889721 DOI: 10.1186/s13287-019-1437-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Background Inner ear supporting cells (SCs) in the neonatal mouse cochlea are a potential source for hair cell (HC) regeneration, but several studies have shown that the regeneration ability of SCs decreases dramatically as mice age and that lost HCs cannot be regenerated in adult mice. To better understand how SCs might be better used to regenerate HCs, it is important to understand how the gene expression profile changes in SCs at different ages. Methods Here, we used Sox2GFP/+ mice to isolate the Sox2+ SCs at postnatal day (P)3, P7, P14, and P30 via flow cytometry. Next, we used RNA-seq to determine the transcriptome expression profiles of P3, P7, P14, and P30 SCs. To further analyze the relationships between these age-related and differentially expressed genes in Sox2+ SCs, we performed gene ontology (GO) analysis. Results Consistent with previous reports, we also found that the proliferation and HC regeneration ability of isolated Sox2+ SCs significantly decreased as mice aged. We identified numerous genes that are enriched and differentially expressed in Sox2+ SCs at four different postnatal ages, including cell cycle genes, signaling pathway genes, and transcription factors that might be involved in regulating the proliferation and HC differentiation ability of SCs. We thus present a set of genes that might regulate the proliferation and HC regeneration ability of SCs, and these might serve as potential new therapeutic targets for HC regeneration. Conclusions In our research, we found several genes that might play an important role in regulating the proliferation and HC regeneration ability of SCs. These datasets are expected to serve as a resource to provide potential new therapeutic targets for regulating the ability of SCs to regenerate HCs in postnatal mammals.
Collapse
Affiliation(s)
- Cheng Cheng
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.,Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yunfeng Wang
- Shanghai Fenyang Vision & Audition Center, Shanghai, China.,ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Weijie Zhu
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Waqas Muhammad
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.,Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan
| | - Liyan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Ling Lu
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Junyan Gao
- Jiangsu Rehabilitation Research Center for Hearing and Speech Impairment, Nanjing, 210004, Jiangsu, China
| | - Mingliang Tang
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China.
| | - Renjie Chai
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China. .,MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China. .,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
8
|
Endoplasmic reticulum stress is involved in spiral ganglion neuron apoptosis following chronic kanamycin-induced deafness. Biosci Rep 2019; 39:BSR20181749. [PMID: 30626727 PMCID: PMC6592474 DOI: 10.1042/bsr20181749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 11/17/2022] Open
Abstract
Aminoglycoside antibiotics-induced hearing loss is a common sensorineural impairment. Spiral ganglion neurons (SGNs) are first-order neurons of the auditory pathway and are critical for the maintenance of normal hearing. In the present study, we investigated the time-course of morphological changes and the degeneration process of spiral ganglion cells (SGCs) following chronic kanamycin-induced deafness and determined whether the endoplasmic reticulum (ER) stress was involved in the degeneration of SGNs. We detected density changes in SGCs and the expressions of Bip, inositol requirement 1 (IRE1)α, activating transcription factor-6α, p-PERK, p-eIF2α, CHOP, and caspase-12 at each time point after kanamycin treatment. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was also performed. The number of SGC deletions reached ∼50% at the 70th day after kanamycin administration and the ER of most SGCs were dilated. The expression of p-PERK, p-eIF2α, p-IRE1α, Bip, caspase-12, and Chop was significantly unregulated after kanamycin treatment. The number of SGCs that were positive for both TUNEL and caspase-12 increased from day 7 to 28. Taken together, these data demonstrate that ER stress was involved in kanamycin-induced apoptosis of SGNs. Kanamycin-induced SGN apoptosis is mediated, at least in part, by ER stress-induced upregulation of CHOP and caspase-12.
Collapse
|
9
|
Wang C, Chen D, Wang Q, Tan R. Kanamycin detection based on the catalytic ability enhancement of gold nanoparticles. Biosens Bioelectron 2017; 91:262-267. [DOI: 10.1016/j.bios.2016.12.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 12/16/2016] [Indexed: 11/24/2022]
|
10
|
Wang C, Wang C, Wang Q, Chen D. Resonance light scattering method for detecting kanamycin in milk with enhanced sensitivity. Anal Bioanal Chem 2017; 409:2839-2846. [DOI: 10.1007/s00216-017-0228-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/25/2016] [Accepted: 01/25/2017] [Indexed: 11/28/2022]
|