1
|
Cano A, Ettcheto M, Espina M, Auladell C, Folch J, Kühne BA, Barenys M, Sánchez-López E, Souto EB, García ML, Turowski P, Camins A. Epigallocatechin-3-gallate PEGylated poly(lactic-co-glycolic) acid nanoparticles mitigate striatal pathology and motor deficits in 3-nitropropionic acid intoxicated mice. Nanomedicine (Lond) 2021; 16:19-35. [PMID: 33410329 DOI: 10.2217/nnm-2020-0239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To compare free and nanoparticle (NP)-encapsulated epigallocatechin-3-gallate (EGCG) for the treatment of Huntington's disease (HD)-like symptoms in mice. Materials & methods: EGCG was incorporated into PEGylated poly(lactic-co-glycolic) acid NPs with ascorbic acid (AA). HD-like striatal lesions and motor deficit were induced in mice by 3-nitropropionic acid-intoxication. EGCG and EGCG/AA NPs were co-administered and behavioral motor assessments and striatal histology performed after 5 days. Results: EGCG/AA NPs were significantly more effective than free EGCG in reducing motor disturbances and depression-like behavior associated with 3-nitropropionic acid toxicity. EGCG/AA NPs treatment also mitigated neuroinflammation and prevented neuronal loss. Conclusion: NP encapsulation enhances therapeutic robustness of EGCG in this model of HD symptomatology. Together with our previous findings, this highlights the potential of EGCG/AA NPs in the symptomatic treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain.,Unit of Biochemistry & Pharmacology, Faculty of Medicine & Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain
| | - Carmen Auladell
- Department of Cellular Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Jaume Folch
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Unit of Biochemistry & Pharmacology, Faculty of Medicine & Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Britta A Kühne
- Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain
| | - Marta Barenys
- Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College of London, London, UK
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain
| |
Collapse
|
2
|
Yu B, Zhang J, Li H, Sun X. Silencing of aquaporin1 activates the Wnt signaling pathway to improve cognitive function in a mouse model of Alzheimer's disease. Gene 2020; 755:144904. [PMID: 32540373 DOI: 10.1016/j.gene.2020.144904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Aquaporins (AQPs) are water channel proteins robustly presenting in the central nervous system (CNS). Increasing evidence suggests the crucial role of AQP1 in the pathogenesis of CNS injury but scarce data are provided for the potential role of AQP1 in Alzheimer's disease (AD). Thus, the present study aimed to investigate the effects of AQP1 on cognitive function in a mouse model of AD. METHODS A mouse model of AD was established by using the β-amyloid isoform Aβ1-42, and then assessed by the step-through test and water maze experiment. The expression of AQP1 was quantified in the AD model. The effects of AQP1 on the cognitive function of AD mice and the Wnt signaling pathway were elucidated using gain- and loss-of-function approaches. Furthermore, hippocampal neurons were isolated and treated with Aβ1-42 for in vitro experiments and the effects of the Wnt signaling pathway on hippocampal neuron apoptosis were analyzed with the use of inhibitor or activator of this pathway. RESULTS AQP1 was highly-expressed in the AD mouse model while AQP1 silencing improved cognitive function in AD mice. Besides, silencing of AQP1 exhibited protective effects on hippocampal neurons in AD mice. Furthermore, AQP1 inhibited the Wnt signaling pathway while AQP1 promoted neuronal apoptosis by inhibiting the Wnt signaling pathway, thereby damaging the cognitive function. CONCLUSIONS AQP1 silencing attenuates the cognitive impairment in AD through activation of the Wnt signaling pathway, highlighting a novel therapeutic target against AD.
Collapse
Affiliation(s)
- Benshuai Yu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 117000, PR China; Department of Neurosurgery, Benxi Central Hospital, Benxi 117000, PR China
| | - Junzhu Zhang
- Department of Occupational Medicine, Benxi Central Hospital, Benxi 117000, PR China
| | - Hai Li
- Department of Urology Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Xiaohong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 117000, PR China.
| |
Collapse
|
3
|
Li L, Yang R, Feng M, Guo Y, Wang Y, Guo J, Lu X. Rig-I is involved in inflammation through the IPS-1/TRAF 6 pathway in astrocytes under chemical hypoxia. Neurosci Lett 2018; 672:46-52. [PMID: 29474875 DOI: 10.1016/j.neulet.2018.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
Abstract
The retinoic acid-inducible gene I (RIG-I) is a crucial cytoplasmic pathogen recognition receptor involved in neuroinflammation in degenerative diseases. In the present study, in vitro human astrocytes were subjected to a chemical hypoxia model using cobalt chloride pretreatment. Chemical hypoxia induces the up-regulation of RIG-I in astrocytes and results in the expression of inflammatory cytokines IL-1β, IL-6, and TNF-α in an NF-κB dependent manner. Elevated RIG-I modulates the interaction of interferon-β promoter stimulator-1 (IPS-1) and TNF receptor-associated factor 6 (TRAF6) following chemical hypoxia. Inhibition of IPS-1 or TRAF6 suppresses RIG-I-induced NF-κB activation and inflammatory cytokines in response to chemical hypoxia. These data suggest that chemical hypoxia leads to RIG-I activation and the expression of inflammatory cytokines through the NF-κB pathway. Blocking IPS-1/TRAF6 pathway relieves RIG-I-induced neuroinflammation in astrocytes subjected to hypoxia.
Collapse
Affiliation(s)
- Lei Li
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China; Department of Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Rongli Yang
- Department of Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Meijiang Feng
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - YiChen Guo
- School of medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - YuXuan Wang
- School of medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Guo
- School of medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
4
|
Shen P, Hou S, Zhu M, Zhao M, Ouyang Y, Feng J. Cortical spreading depression preconditioning mediates neuroprotection against ischemic stroke by inducing AMP-activated protein kinase-dependent autophagy in a rat cerebral ischemic/reperfusion injury model. J Neurochem 2017; 140:799-813. [PMID: 27987215 DOI: 10.1111/jnc.13922] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Pingping Shen
- Institute of Neuroscience Center and Neurology Department; The First Affiliated Hospital of Jilin University; Changchun Jilin China
| | - Shuai Hou
- Institute of Neuroscience Center and Neurology Department; The First Affiliated Hospital of Jilin University; Changchun Jilin China
| | - Mingqin Zhu
- Institute of Neuroscience Center and Neurology Department; The First Affiliated Hospital of Jilin University; Changchun Jilin China
| | - Mingming Zhao
- Institute of Neuroscience Center and Neurology Department; The First Affiliated Hospital of Jilin University; Changchun Jilin China
| | - Yibing Ouyang
- Institute of Neuroscience Center and Neurology Department; The First Affiliated Hospital of Jilin University; Changchun Jilin China
- Department of Anesthesia; Stanford University School of Medicine; Stanford California USA
| | - Jiachun Feng
- Institute of Neuroscience Center and Neurology Department; The First Affiliated Hospital of Jilin University; Changchun Jilin China
| |
Collapse
|
5
|
Progress in AQP Research and New Developments in Therapeutic Approaches to Ischemic and Hemorrhagic Stroke. Int J Mol Sci 2016; 17:ijms17071146. [PMID: 27438832 PMCID: PMC4964519 DOI: 10.3390/ijms17071146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022] Open
Abstract
Cerebral edema often manifests after the development of cerebrovascular disease, particularly in the case of stroke, both ischemic and hemorrhagic. Without clinical intervention, the influx of water into brain tissues leads to increased intracranial pressure, cerebral herniation, and ultimately death. Strategies to manage the development of edema constitute a major unmet therapeutic need. However, despite its major clinical significance, the mechanisms underlying cerebral water transport and edema formation remain elusive. Aquaporins (AQPs) are a class of water channel proteins which have been implicated in the regulation of water homeostasis and cerebral edema formation, and thus represent a promising target for alleviating stroke-induced cerebral edema. This review examines the significance of relevant AQPs in stroke injury and subsequently explores neuroprotective strategies aimed at modulating AQP expression, with a particular focus on AQP4, the most abundant AQP in the central nervous system.
Collapse
|