1
|
Long J, Liu H, Qiu Z, Xiao Z, Lu Z. Glabridin Therapy Reduces Chronic Allodynia, Spinal Microgliosis, and Dendritic Spine Generation by Inhibiting Fractalkine-CX3CR1 Signaling in a Mouse Model of Tibial Fractures. Brain Sci 2023; 13:brainsci13050739. [PMID: 37239211 DOI: 10.3390/brainsci13050739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Patients undergoing bone fractures frequently suffer from irritating chronic pain after orthopedic repairs. Chemokine-mediated interactions between neurons and microglia are important steps for neuroinflammation and excitatory synaptic plasticity during the spinal transmission of pathological pain. Recently, glabridin, the main bioactive component of licorice, has been shown to exhibit anti-nociceptive and neuroprotective properties for inflammatory pain. This present study evaluated the therapeutic potential of glabridin and its analgesic mechanisms using a mouse model of tibial fracture-associated chronic pain. Repetitive injections of glabridin were delivered spinally daily for 4 continuous days from days 3 to 6 after the fractures. Herein, we discovered that repeated administrations of glabridin (10 and 50 μg, but not 1 μg) could prevent prolonged cold allodynia and mechanical allodynia following bone fractures. A single intrathecal intervention with glabridin (50 μg) relieved an existing chronic allodynia two weeks following the fracture surgeries. Systemic therapies with glabridin (intraperitoneal; 50 mg kg-1) were protective against long-lasting allodynia caused by fractures. Furthermore, glabridin restricted the fracture-caused spinal overexpressions of the chemokine fractalkine and its receptor CX3CR1, as well as the elevated number of microglial cells and dendritic spines. Strikingly, glabridin induced the inhibition of pain behaviors, microgliosis, and spine generation, which were abolished with the co-administration of exogenous fractalkine. Meanwhile, the exogenous fractalkine-evoked acute pain was compensated after microglia inhibition. Additionally, spinal neutralization of fractalkine/CX3CR1 signaling alleviated the intensity of postoperative allodynia after tibial fractures. These key findings identify that glabridin therapies confer protection against inducing and sustaining fracture-elicited chronic allodynia by suppressing fractalkine/CX3CR1-dependent spinal microgliosis and spine morphogenesis, suggesting that glabridin is a promising candidate in the translational development of chronic fracture pain control.
Collapse
Affiliation(s)
- Juan Long
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou 325000, China
| | - Hongbing Liu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou 325000, China
| | - Zhimin Qiu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou 325000, China
| | - Zhong Xiao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou 325000, China
- Intensive Care Unit, Shaoxing People's Hospital, Shaoxing 312000, China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou 325000, China
| |
Collapse
|
2
|
Liu X, Bae C, Liu B, Zhang YM, Zhou X, Zhang D, Zhou C, DiBua A, Schutz L, Kaczocha M, Puopolo M, Yamaguchi TP, Chung JM, Tang SJ. Development of opioid-induced hyperalgesia depends on reactive astrocytes controlled by Wnt5a signaling. Mol Psychiatry 2023; 28:767-779. [PMID: 36203006 PMCID: PMC10388343 DOI: 10.1038/s41380-022-01815-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Opioids are the frontline analgesics for managing various types of pain. Paradoxically, repeated use of opioid analgesics may cause an exacerbated pain state known as opioid-induced hyperalgesia (OIH), which significantly contributes to dose escalation and consequently opioid overdose. Neuronal malplasticity in pain circuits has been the predominant proposed mechanism of OIH expression. Although glial cells are known to become reactive in OIH animal models, their biological contribution to OIH remains to be defined and their activation mechanism remains to be elucidated. Here, we show that reactive astrocytes (a.k.a. astrogliosis) are critical for OIH development in both male and female mice. Genetic reduction of astrogliosis inhibited the expression of OIH and morphine-induced neural circuit polarization (NCP) in the spinal dorsal horn (SDH). We found that Wnt5a is a neuron-to-astrocyte signal that is required for morphine-induced astrogliosis. Conditional knock-out of Wnt5a in neurons or its co-receptor ROR2 in astrocytes blocked not only morphine-induced astrogliosis but also OIH and NCP. Furthermore, we showed that the Wnt5a-ROR2 signaling-dependent astrogliosis contributes to OIH via inflammasome-regulated IL-1β. Our results reveal an important role of morphine-induced astrogliosis in OIH pathogenesis and elucidate a neuron-to-astrocyte intercellular Wnt signaling pathway that controls the astrogliosis.
Collapse
Affiliation(s)
- Xin Liu
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Chilman Bae
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.,School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, 62901, IL, USA
| | - Bolong Liu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.,Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Yong-Mei Zhang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Xiangfu Zhou
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Donghang Zhang
- Laboratory of Anesthesia & Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Adriana DiBua
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Livia Schutz
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Martin Kaczocha
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Michelino Puopolo
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Terry P Yamaguchi
- Center for Cancer Research, Cancer and Developmental Biology Laboratory, Cell Signaling in Vertebrate Development Section, NCI-Frederick, NIH, Frederick, 21702, MD, USA
| | - Jin Mo Chung
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA
| | - Shao-Jun Tang
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA. .,Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA. .,Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, 77555, TX, USA.
| |
Collapse
|
3
|
Restrepo LJ, DePew AT, Moese ER, Tymanskyj SR, Parisi MJ, Aimino MA, Duhart JC, Fei H, Mosca TJ. γ-secretase promotes Drosophila postsynaptic development through the cleavage of a Wnt receptor. Dev Cell 2022; 57:1643-1660.e7. [PMID: 35654038 DOI: 10.1016/j.devcel.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
Developing synapses mature through the recruitment of specific proteins that stabilize presynaptic and postsynaptic structure and function. Wnt ligands signaling via Frizzled (Fz) receptors play many crucial roles in neuronal and synaptic development, but whether and how Wnt and Fz influence synaptic maturation is incompletely understood. Here, we show that Fz2 receptor cleavage via the γ-secretase complex is required for postsynaptic development and maturation. In the absence of γ-secretase, Drosophila neuromuscular synapses fail to recruit postsynaptic scaffolding and cytoskeletal proteins, leading to behavioral deficits. Introducing presenilin mutations linked to familial early-onset Alzheimer's disease into flies leads to synaptic maturation phenotypes that are identical to those seen in null alleles. This conserved role for γ-secretase in synaptic maturation and postsynaptic development highlights the importance of Fz2 cleavage and suggests that receptor processing by proteins linked to neurodegeneration may be a shared mechanism with aspects of synaptic development.
Collapse
Affiliation(s)
- Lucas J Restrepo
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Alison T DePew
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Elizabeth R Moese
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Stephen R Tymanskyj
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael J Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael A Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Hong Fei
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA.
| |
Collapse
|
4
|
Wnt/β-Catenin Pathway in Experimental Model of Fibromyalgia: Role of Hidrox ®. Biomedicines 2021; 9:biomedicines9111683. [PMID: 34829912 PMCID: PMC8615925 DOI: 10.3390/biomedicines9111683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/13/2023] Open
Abstract
Fibromyalgia (FM) is a chronic condition characterized by persistent widespread pain that negatively affects the quality of life of patients. The WNT/β-catenin signaling pathway seems to be involved in central sensitization and different pain states. The objective of this study was to investigate the beneficial effects of a new compound called Hidrox® (HD), containing 40-50% hydroxytyrosol, in counteracting the pain associated with FM. An FM-like model was induced in rats by subcutaneous injections of reserpine (1 mg/kg) for three consecutive days. Later, HD (10 mg/kg) was administered orally to the animals for seven days. Reserpine injections induced WNT/β-catenin pathway activation, release of pro-inflammatory mediators as well as a significant increase in oxidative stress. Daily treatment with HD was able to modulate the WNT/β-catenin and Nrf2 pathways and consequently attenuate the behavioral deficits and microglia activation induced by reserpine injection. These results indicate that nutritional consumption of HD can be considered as a new therapeutic approach for human FM.
Collapse
|
5
|
Wnt signaling: A prospective therapeutic target for chronic pain. Pharmacol Ther 2021; 231:107984. [PMID: 34480969 DOI: 10.1016/j.pharmthera.2021.107984] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Despite the rapid advance over the past decades to design effective therapeutic pharmacological interventions, chronic pain remains to be an unresolved healthcare concern. Long term use of opioids, the first line analgesics, often causes detrimental side effects. Therefore, a profound understanding of the mechanisms underlying the development and maintenance of chronic pain states is urgently needed for the management of chronic pain. Substantial evidence indicates aberrant activation of Wnt signaling pathways in sciatic nerve, dorsal root ganglia and spinal cord dorsal horn in rodent models of chronic pain. Moreover, growing evidence shows that pharmacological blockage of aberrant activation of Wnt signaling pathways attenuates pain behaviors in animal models of chronic pain. Importantly, both intrathecal injection of Wnt agonists and Wnt ligands to naïve rats lead to the development of mechanical allodynia, which was inhibited by Wnt inhibitors. In this review, we summarized and discussed the therapeutic potential of pharmacological inhibitors of Wnt signaling in chronic pain in preclinical studies. These evidence showed that aberrant activation of Wnt signaling pathways contributed to chronic pain via enhancing neuroinflammation, regulating synaptic plasticity and reducing intraepidermal nerve fiber density. However, these findings raise further questions. Overall, despite the future challenges, these pioneering studies suggest that Wnt signaling is a promising therapeutic target for chronic pain.
Collapse
|
6
|
A Role for Transmembrane Protein 16C/Slack Impairment in Excitatory Nociceptive Synaptic Plasticity in the Pathogenesis of Remifentanil-induced Hyperalgesia in Rats. Neurosci Bull 2021; 37:669-683. [PMID: 33779892 DOI: 10.1007/s12264-021-00652-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/09/2020] [Indexed: 10/21/2022] Open
Abstract
Remifentanil is widely used to control intraoperative pain. However, its analgesic effect is limited by the generation of postoperative hyperalgesia. In this study, we investigated whether the impairment of transmembrane protein 16C (TMEM16C)/Slack is required for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) activation in remifentanil-induced postoperative hyperalgesia. Remifentanil anesthesia reduced the paw withdrawal threshold from 2 h to 48 h postoperatively, with a decrease in the expression of TMEM16C and Slack in the dorsal root ganglia (DRG) and spinal cord. Knockdown of TMEM16C in the DRG reduced the expression of Slack and elevated the basal peripheral sensitivity and AMPAR expression and function. Overexpression of TMEM16C in the DRG impaired remifentanil-induced ERK1/2 phosphorylation and behavioral hyperalgesia. AMPAR-mediated current and neuronal excitability were downregulated by TMEM16C overexpression in the spinal cord. Taken together, these findings suggest that TMEM16C/Slack regulation of excitatory synaptic plasticity via GluA1-containing AMPARs is critical in the pathogenesis of remifentanil-induced postoperative hyperalgesia in rats.
Collapse
|
7
|
Spinal caspase-6 contributes to remifentanil-induced hyperalgesia via regulating CCL21/CXCR3 pathway in rats. Neurosci Lett 2020; 721:134802. [DOI: 10.1016/j.neulet.2020.134802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022]
|
8
|
Huang J, Bloe CB, Zhou X, Wu S, Zhang W. The Role of the Spinal Wnt Signaling Pathway in HIV-Related Neuropathic Pain. Cell Mol Neurobiol 2020; 40:1075-1085. [PMID: 32100186 DOI: 10.1007/s10571-020-00805-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/28/2020] [Indexed: 12/29/2022]
Abstract
Human immunodeficiency virus (HIV)-related neuropathic pain includes HIV-induced neuropathic pain (HNP) and antiretroviral therapy-induced neuropathic pain (ART-NP). A significant amount of evidence from the past few years has shown that the development of HIV-related neuropathic pain is closely related to the activation of the Wnt signaling pathway in the spinal cord. This review summarizes the function of the spinal Wnt signaling pathway in HIV-induced neuropathic pain, focusing on the role of the spinal Wnt signaling pathway in HNP, and provides a theoretical basis for further studies and the exploration of new target drugs.
Collapse
Affiliation(s)
- Jian Huang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chris Bloe Bloe
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xinxin Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shengjun Wu
- Clinical Laboratory of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
9
|
Fractalkine is Involved in Lipopolysaccharide-Induced Podocyte Injury through the Wnt/β-Catenin Pathway in an Acute Kidney Injury Mouse Model. Inflammation 2020; 42:1287-1300. [PMID: 30919150 PMCID: PMC6647365 DOI: 10.1007/s10753-019-00988-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Injury to podocytes leads to proteinuria, a hallmark of most glomerular diseases as well as being associated with the progression of kidney disease. Activation of the Wnt/β-catenin pathway is associated with the pathogenesis of podocyte dysfunction and can play a role in renal injury. Furthermore, the expression of fractalkine (FKN) induced by lipopolysaccharides (LPS) is also one of crucial inflammation factors closely related to renal tissue damage. The aim of this study is to explore the mechanism of LPS-induced FKN expression leading to podocyte injury and contribute to acute kidney injury (AKI) through regulation of Wnt/β-catenin pathway. An AKI model was established for in vivo experiments and blood was collected for serum BUN and Cr measurement, and histopathological features of the kidneys were studied by PASM and IHC staining. For in vitro experiments, a mouse podocyte cell line was stimulated with different concentrations of LPS for 24 and 48 h after which podocyte viability and apoptosis of cells were evaluated. The expression of podocyte-specific markers, FKN and Wnt/β-catenin pathway mRNA and protein was detected in mice and cells by using qRT-PCR and western blotting. LPS induced the expression of FKN and activation of the Wnt/β-catenin pathway, leading to a decrease of podocyte-specific proteins which resulted in poor renal pathology and dysfunction in the AKI mouse model. Moreover, LPS treatment significantly decreased cell viability and induced podocyte apoptosis in a dose-dependent manner that causes changes in the expression of podocyte-specific proteins through activation of FKN and the Wnt/β-catenin pathway. Thus, the expression of FKN and Wnt/β-catenin pathway by LPS is closely associated with podocyte damage or loss and could therefore account for progressive AKI. Our findings indicate that LPS induce podocyte injury and contribute to the pathogenesis of AKI by upregulating the expression of FKN and Wnt/β-catenin pathway.
Collapse
|
10
|
Microglia Mediate HIV-1 gp120-Induced Synaptic Degeneration in Spinal Pain Neural Circuits. J Neurosci 2019; 39:8408-8421. [PMID: 31471472 DOI: 10.1523/jneurosci.2851-18.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
HIV-1 infection of the nervous system causes various neurological diseases, and synaptic degeneration is likely a critical step in the neuropathogenesis. Our prior studies revealed a significant decrease of synaptic protein, specifically in the spinal dorsal horn of patients with HIV-1 in whom pain developed, suggesting a potential contribution of synaptic degeneration to the pathogenesis of HIV-associated pain. However, the mechanism by which HIV-1 causes the spinal synaptic degeneration is unclear. Here, we identified a critical role of microglia in the synaptic degeneration. In primary cortical cultures (day in vitro 14) and spinal cords of 3- to 5-month-old mice (both sexes), microglial ablation inhibited gp120-induced synapse decrease. Fractalkine (FKN), a microglia activation chemokine specifically expressed in neurons, was upregulated by gp120, and knockout of the FKN receptor CX3CR1, which is predominantly expressed in microglia, protected synapses from gp120-induced toxicity. These results indicate that the neuron-to-microglia intercellular FKN/CX3CR1 signaling plays a role in gp120-induced synaptic degeneration. To elucidate the mechanism controlling this intercellular signaling, we tested the role of the Wnt/β-catenin pathway in regulating FKN expression. Inhibition of Wnt/β-catenin signaling blocked both gp120-induced FKN upregulation and synaptic degeneration, and gp120 stimulated Wnt/β-catenin-regulated FKN expression via NMDA receptors (NMDARs). Furthermore, NMDAR antagonist APV, Wnt/β-catenin signaling suppressor DKK1, or knockout of CX3CR1 alleviated gp120-induced mechanical allodynia in mice, suggesting a critical contribution of the Wnt/β-catenin/FKN/CX3R1 pathway to gp120-induced pain. These findings collectively suggest that HIV-1 gp120 induces synaptic degeneration in the spinal pain neural circuit by activating microglia via Wnt3a/β-catenin-regulated FKN expression in neurons.SIGNIFICANCE STATEMENT Synaptic degeneration develops in the spinal cord dorsal horn of HIV patients with chronic pain, but the patients without the pain disorder do not show this neuropathology, indicating a pathogenic contribution of the synaptic degeneration to the development of HIV-associated pain. However, the mechanism underlying the synaptic degeneration is unclear. We report here that HIV-1 gp120, a neurotoxic protein that is specifically associated with the manifestation of pain in HIV patients, induces synapse loss via microglia. Further studies elucidate that gp120 activates microglia by stimulating Wnt/β-catenin-regulated fractalkine in neuron. The results demonstrate a critical role of microglia in the pathogenesis of HIV-associated synaptic degeneration in the spinal pain neural circuit.
Collapse
|
11
|
Xu W, Liu W, Yu W. The involvement of iron responsive element (-) divalent metal transporter 1-mediated the spinal iron overload via CXCL10/CXCR3 pathway in neuropathic pain in rats. Neurosci Lett 2019; 694:154-160. [DOI: 10.1016/j.neulet.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 01/28/2023]
|
12
|
Zhang L, Guo S, Zhao Q, Li Y, Song C, Wang C, Yu Y, Wang G. Spinal Protein Kinase Mζ Regulates α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Trafficking and Dendritic Spine Plasticity via Kalirin-7 in the Pathogenesis of Remifentanil-induced Postincisional Hyperalgesia in Rats. Anesthesiology 2018; 129:173-186. [PMID: 29578864 DOI: 10.1097/aln.0000000000002190] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background
Intraoperative remifentanil anesthesia exaggerates postoperative pain sensitivity. Recent studies recapitulate the significance of protein kinase Mζ in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor–mediated pathologic pain. Kalirin-7, a Rho guanine nucleotide exchange factor, coordinates AMPA receptor trafficking and dendritic spine plasticity. This study examines whether protein kinase Mζ and Kalirin-7 contribute to remifentanil-induced postincisional hyperalgesia via AMPA receptor.
Methods
Plantar incision was performed 10 min after the start of remifentanil infusion (1 µg · kg−1 · min−1 for 60 min). Paw withdrawal threshold (primary outcome), spinal protein kinase Mζ activity, Kalirin-7 expression, AMPA receptor trafficking, and spine morphology were assessed. Protein kinase Mζ inhibitor and Kalirin-7 knockdown by short hairpin RNA elucidated the mechanism and prevention of hyperalgesia. Whole-cell patch-clamp recording analyzed the role of protein kinase Mζ in spinal AMPA receptor–induced current.
Results
Remifentanil reduced postincisional paw withdrawal threshold (mean ± SD, control vs. hyperalgesia, 18.9 ± 1.6 vs. 5.3 ± 1.2 g, n = 7) at postoperative 48 h, which was accompanied by an increase in spinal protein kinase Mζ phosphorylation (97.8 ± 25.1 vs. 181.5 ± 18.3%, n = 4), Kalirin-7 production (101.9 ± 29.1 vs. 371.2 ± 59.1%, n = 4), and number of spines/10 µm (2.0 ± 0.3 vs. 13.0 ± 1.6, n = 4). Protein kinase Mζ inhibitor reduced remifentanil-induced hyperalgesia, Kalirin-7 expression, and GluA1 trafficking. Incubation with protein kinase Mζ inhibitor reversed remifentanil-enhanced AMPA receptor-induced current in dorsal horn neurons. Kalirin-7 deficiency impaired remifentanil-caused hyperalgesia, postsynaptic GluA1 insertion, and spine plasticity. Selective GluA2-lacking AMPA receptor antagonist prevented hyperalgesia in a dose-dependent manner.
Conclusions
Spinal protein kinase Mζ regulation of GluA1-containing AMPA receptor trafficking and spine morphology via Kalirin-7 overexpression is a fundamental pathogenesis of remifentanil-induced hyperalgesia in rats.
Collapse
Affiliation(s)
- Linlin Zhang
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Suqian Guo
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Zhao
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chengcheng Song
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunyan Wang
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonghao Yu
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guolin Wang
- From the Tianjin Research Institute of Anesthesiology and Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
14
|
Farmer AD, Gallagher J, Bruckner-Holt C, Aziz Q. Narcotic bowel syndrome. Lancet Gastroenterol Hepatol 2017; 2:361-368. [DOI: 10.1016/s2468-1253(16)30217-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
|