1
|
Adolf A, Turko P, Rohrbeck A, Just I, Vida I, Ahnert-Hilger G, Höltje M. The Higher Sensitivity of GABAergic Compared to Glutamatergic Neurons to Growth-Promoting C3bot Treatment Is Mediated by Vimentin. Front Cell Neurosci 2020; 14:596072. [PMID: 33240046 PMCID: PMC7669547 DOI: 10.3389/fncel.2020.596072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022] Open
Abstract
The current study investigates the neurotrophic effects of Clostridium botulinum C3 transferase (C3bot) on highly purified, glia-free, GABAergic, and glutamatergic neurons. Incubation with nanomolar concentrations of C3bot promotes dendrite formation as well as dendritic and axonal outgrowth in rat GABAergic neurons. A comparison of C3bot effects on sorted mouse GABAergic and glutamatergic neurons obtained from newly established NexCre;Ai9xVGAT Venus mice revealed a higher sensitivity of GABAergic cells to axonotrophic and dendritic effects of C3bot in terms of process length and branch formation. Protein biochemical analysis of known C3bot binding partners revealed comparable amounts of β1 integrin in both cell types but a higher expression of vimentin in GABAergic neurons. Accordingly, binding of C3bot to GABAergic neurons was stronger than binding to glutamatergic neurons. A combinatory treatment of glutamatergic neurons with C3bot and vimentin raised the amount of bound C3bot to levels comparable to the ones in GABAergic neurons, thereby confirming the specificity of effects. Overall, different surface vimentin levels between GABAergic and glutamatergic neurons exist that mediate neurotrophic C3bot effects.
Collapse
Affiliation(s)
- Andrej Adolf
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Paul Turko
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School (MHH), Hannover, Germany
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School (MHH), Hannover, Germany
| | - Imre Vida
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus Höltje
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
2
|
Nishida F, Zappa Villar MF, Zanuzzi CN, Sisti MS, Camiña AE, Reggiani PC, Portiansky EL. Intracerebroventricular Delivery of Human Umbilical Cord Mesenchymal Stem Cells as a Promising Therapy for Repairing the Spinal Cord Injury Induced by Kainic Acid. Stem Cell Rev Rep 2020; 16:167-180. [PMID: 31760626 DOI: 10.1007/s12015-019-09934-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a common pathological condition that leads to permanent or temporal loss of motor and autonomic functions. Kainic acid (KA), an agonist of kainate receptors, a type of ionotropic glutamate receptor, is widely used to induce experimental neurodegeneration models of CNS. Mesenchymal Stem Cells (MSC) therapy applied at the injured nervous tissue have emerged as a promising therapeutic treatment. Here we used a validated SCI experimental model in which an intraparenchymal injection of KA into the C5 segment of rat spinal cord induced an excitotoxic lesion. Three days later, experimental animals were treated with an intracerebroventricular injection of human umbilical cord (hUC) MSC whereas control group only received saline solution. Sensory and motor skills as well as neuronal and glial reaction of both groups were recorded. Differences in motor behavior, neuronal counting and glial responses were observed between hUC-MSC-treated and untreated rats. According to the obtained results, we suggest that hUC-MSC therapy delivered into the fourth ventricle using the intracerebroventricular via can exert a neuroprotective or neurorestorative effect on KA-injected animals.
Collapse
Affiliation(s)
- Fabián Nishida
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Calles 60 y 118, 1900, La Plata, Buenos Aires, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - María F Zappa Villar
- National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,INIBIOLP, School of Medical Sciences, UNLP, La Plata, Buenos Aires, Argentina.,Department of Histology and of Embryology B, School of Medical Sciences, UNLP, La Plata, Buenos Aires, Argentina
| | - Carolina N Zanuzzi
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Calles 60 y 118, 1900, La Plata, Buenos Aires, Argentina. .,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina. .,Department of Histology and Embryology, School of Veterinary Sciences, UNLP, La Plata, Buenos Aires, Argentina.
| | - María S Sisti
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Calles 60 y 118, 1900, La Plata, Buenos Aires, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Agustina E Camiña
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Calles 60 y 118, 1900, La Plata, Buenos Aires, Argentina
| | - Paula C Reggiani
- National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,INIBIOLP, School of Medical Sciences, UNLP, La Plata, Buenos Aires, Argentina.,Department of Histology and of Embryology B, School of Medical Sciences, UNLP, La Plata, Buenos Aires, Argentina
| | - Enrique L Portiansky
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Calles 60 y 118, 1900, La Plata, Buenos Aires, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Lidocaine protects neurons of the spinal cord in an excitotoxicity model. Neurosci Lett 2019; 698:105-112. [DOI: 10.1016/j.neulet.2019.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
|
4
|
Zavodska M, Galik J, Marsala M, Papcunova S, Pavel J, Racekova E, Martoncikova M, Sulla I, Gajdos M, Lukac I, Kafka J, Ledecky V, Sulla I, Reichel P, Trbolova A, Capik I, Bimbova K, Bacova M, Stropkovska A, Kisucka A, Miklisova D, Lukacova N. Hypothermic treatment after computer-controlled compression in minipig: A preliminary report on the effect of epidural vs. direct spinal cord cooling. Exp Ther Med 2018; 16:4927-4942. [PMID: 30542449 PMCID: PMC6257352 DOI: 10.3892/etm.2018.6831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/29/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of the present study was to investigate the therapeutic efficacy of local hypothermia (beginning 30 min post-injury persisting for 5 h) on tissue preservation along the rostro-caudal axis of the spinal cord (3 cm cranially and caudally from the lesion site), and the prevention of injury-induced functional loss in a newly developed computer-controlled compression model in minipig (force of impact 18N at L3 level), which mimics severe spinal cord injury (SCI). Minipigs underwent SCI with two post-injury modifications (durotomy vs. intact dura mater) followed by hypothermia through a perfusion chamber with cold (epidural t≈15°C) saline, DMEM/F12 or enriched DMEM/F12 (SCI/durotomy group) and with room temperature (t≈24°C) saline (SCI-only group). Minipigs treated with post-SCI durotomy demonstrated slower development of spontaneous neurological improvement at the early postinjury time points, although the outcome at 9 weeks of survival did not differ significantly between the two SCI groups. Hypothermia with saline (t≈15°C) applied after SCI-durotomy improved white matter integrity in the dorsal and lateral columns in almost all rostro-caudal segments, whereas treatment with medium/enriched medium affected white matter integrity only in the rostral segments. Furthermore, regeneration of neurofilaments in the spinal cord after SCI-durotomy and hypothermic treatments indicated an important role of local saline hypothermia in the functional outcome. Although saline hypothermia (24°C) in the SCI-only group exhibited a profound histological outcome (regarding the gray and white matter integrity and the number of motoneurons) and neurofilament protection in general, none of the tested treatments resulted in significant improvement of neurological status. The findings suggest that clinically-proven medical treatments for SCI combined with early 5 h-long saline hypothermia treatment without opening the dural sac could be more beneficial for tissue preservation and neurological outcome compared with hypothermia applied after durotomy.
Collapse
Affiliation(s)
- Monika Zavodska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jan Galik
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Martin Marsala
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Department of Anesthesiology, Neuroregeneration Laboratory, University of California-San Diego, San Diego, CA 92093, USA
| | - Stefania Papcunova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jaroslav Pavel
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Eniko Racekova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Marcela Martoncikova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Igor Sulla
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Hospital of Slovak Railways, 040 01 Košice, Slovakia
| | - Miroslav Gajdos
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Imrich Lukac
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Jozef Kafka
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Valent Ledecky
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Sulla
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Peter Reichel
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alexandra Trbolova
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Capik
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Katarina Bimbova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Maria Bacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Andrea Stropkovska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Alexandra Kisucka
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Dana Miklisova
- Department of Vector-borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Nadezda Lukacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| |
Collapse
|
5
|
Zanuzzi CN, Nishida F, Sisti MS, Barbeito CG, Portiansky EL. Reactivity of microglia and astrocytes after an excitotoxic injury induced by kainic acid in the rat spinal cord. Tissue Cell 2018; 56:31-40. [PMID: 30736902 DOI: 10.1016/j.tice.2018.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/16/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023]
Abstract
After injury of the nervous system glial cells react according to the stimuli by modifying their morphology and function. Glia activation was reported in different kainic acid (KA)-induced neurodegeneration models. Here, we describe glial morphometric changes occurring in an excitotoxic KA-induced cervical spinal cord injury model. Concomitant degenerative and apoptotic processes are also reported. Male rats injected at the spinal cord C5 segment either with KA or saline were euthanized at post-injection (PI) days 1, 2, 3 or 7. Anti-IBA-1 and anti-GFAP antibodies were used to identify microglia and activated astrocytes, respectively, and to morphometrically characterized them. Fluoro-Jade B staining and TUNEL reaction were used to determine neuronal and glial degeneration and apoptosis. KA-injected group showed a significant increase in microglia number at the ipsilateral side by PI day 3. Different microglia reactive phenotypes were observed. Reactive microglia was still present by PI day 7. Astrocytes in KA-injected group showed a biphasic increase in number at PI days 1 and 3. Degenerative and apoptotic events were only observed in KA-injected animals, increasing mainly by PI day 1. Understanding the compromise of glia in different neurodegenerative processes may help to define possible common or specific therapeutic approaches directed towards neurorestorative strategies.
Collapse
Affiliation(s)
- Carolina Natalia Zanuzzi
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina.
| | - Fabián Nishida
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina
| | - María Susana Sisti
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina
| | - Claudio Gustavo Barbeito
- Laboratory of Descriptive, Experimental and Comparative, Histology and Embriology, Argentina; National Research Council of Science and Technology (CONICET), Argentina
| | - Enrique Leo Portiansky
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina; National Research Council of Science and Technology (CONICET), Argentina
| |
Collapse
|
6
|
A Single Dose of Atorvastatin Applied Acutely after Spinal Cord Injury Suppresses Inflammation, Apoptosis, and Promotes Axon Outgrowth, Which Might Be Essential for Favorable Functional Outcome. Int J Mol Sci 2018; 19:ijms19041106. [PMID: 29642434 PMCID: PMC5979414 DOI: 10.3390/ijms19041106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/12/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
The aim of our study was to limit the inflammatory response after a spinal cord injury (SCI) using Atorvastatin (ATR), a potent inhibitor of cholesterol biosynthesis. Adult Wistar rats were divided into five experimental groups: one control group, two Th9 compression (40 g/15 min) groups, and two Th9 compression + ATR (5 mg/kg, i.p.) groups. The animals survived one day and six weeks. ATR applied in a single dose immediately post-SCI strongly reduced IL-1β release at 4 and 24 h and considerably reduced the activation of resident cells at one day post-injury. Acute ATR treatment effectively prevented the excessive infiltration of destructive M1 macrophages cranially, at the lesion site, and caudally (by 66%, 62%, and 52%, respectively) one day post-injury, whereas the infiltration of beneficial M2 macrophages was less affected (by 27%, 41%, and 16%). In addition, at the same time point, ATR visibly decreased caspase-3 cleavage in neurons, astrocytes, and oligodendrocytes. Six weeks post-SCI, ATR increased the expression of neurofilaments in the dorsolateral columns and Gap43-positive fibers in the lateral columns around the epicenter, and from day 30 to 42, significantly improved the motor activity of the hindlimbs. We suggest that early modulation of the inflammatory response via effects on the M1/M2 macrophages and the inhibition of caspase-3 expression could be crucial for the functional outcome.
Collapse
|
7
|
Puzzolo D, Pisani A, Malta C, Santoro G, Meduri A, Abbate F, Montalbano G, Wylegala E, Rana RA, Bucchieri F, Ieni A, Aragona P, Micali A. Structural, ultrastructural, and morphometric study of the zebrafish ocular surface: a model for human corneal diseases? Curr Eye Res 2017; 43:175-185. [PMID: 29111817 DOI: 10.1080/02713683.2017.1385087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE A morphological and morphometric study of the adult zebrafish ocular surface was performed to provide a comprehensive description of its parts and to evaluate its similarity to the human. MATERIALS AND METHODS The eyes of adult zebrafish were processed for light, transmission and scanning electron microscopy, and for immunohistochemical stain of corneal nerves; a morphometric analysis was also performed on several morphological parameters. RESULTS The corneal epithelium was formed by five layers of cells. No Bowman's layer could be demonstrated. The stroma consisted of lamellae of different thickness with few keratocytes. The Descemet's membrane was absent as the flat and polygonal endothelial cells directly adhered to the deepest corneal lamella. The immunohistochemical stain of neurofilaments failed to demonstrate corneal nerve fibers. The conjunctival epithelium was stratified, overlying the stroma formed by a subepithelial and a deep layer, this latter connected to the scleral cartilage. In the peripheral cornea and in the conjunctiva, many goblet and rodlet cells were observed. The morphometric analysis showed that the peripheral cornea epithelium was thicker when compared to the other parts of the ocular surface, with smaller superficial cells. Desmosomes and hemidesmosomes in the conjunctiva were significantly fewer in number than the other parts of the ocular surface. The stroma was thinner in the conjunctiva than in the cornea, while corneal lamellae were thicker in the intermediate stroma. CONCLUSIONS The zebrafish ocular surface showed significant differences compared to the human, such as the absence of Bowman's layer, Descemet's membrane and corneal nerve fibers, the reduced stromal thickness, and the presence of rodlet cells. On the basis of these original findings, it is suggested that the use of the zebrafish as a model for studying normal or pathological human corneas should be undertaken with particular caution.
Collapse
Affiliation(s)
- Domenico Puzzolo
- a Department of Biomedical Sciences , University of Messina , Messina , Italy
| | - Antonina Pisani
- a Department of Biomedical Sciences , University of Messina , Messina , Italy
| | - Consuelo Malta
- a Department of Biomedical Sciences , University of Messina , Messina , Italy
| | - Giuseppe Santoro
- a Department of Biomedical Sciences , University of Messina , Messina , Italy
| | - Alessandro Meduri
- a Department of Biomedical Sciences , University of Messina , Messina , Italy
| | - Francesco Abbate
- b Department of Veterinary Sciences, Laboratory of Zebrafish Neuromorphology , University of Messina , Messina , Italy
| | - Giuseppe Montalbano
- b Department of Veterinary Sciences, Laboratory of Zebrafish Neuromorphology , University of Messina , Messina , Italy
| | - Edward Wylegala
- c Clinical Department of Ophthalmology, School of Medicine with the Division of Dentistry in Zabrze , Medical University of Silesia , Katowice , Poland
| | - Rosa Alba Rana
- d Department of Medicine and Science of Aging , University of Chieti , Chieti , Italy
| | - Fabio Bucchieri
- e Department of Experimental Medicine, Section of Anatomy , University of Palermo , Palermo , Italy
| | - Antonio Ieni
- f Department of Human Pathology , University of Messina , Messina , Italy
| | - Pasquale Aragona
- g Department of Biomedical Sciences, Regional Referral Center for the Ocular Surface Diseases , University of Messina , Messina , Italy
| | - Antonio Micali
- a Department of Biomedical Sciences , University of Messina , Messina , Italy
| |
Collapse
|