1
|
Pratiwi DIN, Alhajlah S, Alawadi A, Hjazi A, Alawsi T, Almalki SG, Alsalamy A, Kumar A. Mesenchymal stem cells and their extracellular vesicles as emerging therapeutic tools in the treatment of ischemic stroke. Tissue Cell 2024; 87:102320. [PMID: 38342071 DOI: 10.1016/j.tice.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Ischemic stroke (IS) is a neurological condition characterized by severe long-term consequences and an unfavorable prognosis for numerous patients. Despite advancements in stroke treatment, existing therapeutic approaches possess certain limitations. However, accumulating evidence suggests that mesenchymal stem/stromal cells (MSCs) hold promise as a potential therapy for various neurological disorders, including IS, owing to their advantageous properties, such as immunomodulation and tissue regeneration. Additionally, MSCs primarily exert their therapeutic effects through the release of extracellular vesicles (EVs), highlighting the significance of their paracrine activities. These EVs are small double-layered phospholipid membrane vesicles, carrying a diverse cargo of proteins, lipids, and miRNAs that enable effective cell-to-cell communication. Notably, EVs have emerged as attractive substitutes for stem cell therapy due to their reduced immunogenicity, lower tumorigenic potential, and ease of administration and handling. Hence, this review summarizes the current preclinical and clinical studies performed to investigate the safety and therapeutic potential of MSCs and their EVs derived from different sources, including bone marrow, adipose tissue, umbilical cord blood, and Wharton's jelly in IS.
Collapse
Affiliation(s)
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Taif Alawsi
- Department of Laser and Optoelectronics Engineering, University of Technology, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia
| |
Collapse
|
2
|
Saleh RO, Majeed AA, Margiana R, Alkadir OKA, Almalki SG, Ghildiyal P, Samusenkov V, Jabber NK, Mustafa YF, Elawady A. Therapeutic gene delivery by mesenchymal stem cell for brain ischemia damage: Focus on molecular mechanisms in ischemic stroke. Cell Biochem Funct 2024; 42:e3957. [PMID: 38468129 DOI: 10.1002/cbf.3957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
Cerebral ischemic damage is prevalent and the second highest cause of death globally across patient populations; it is as a substantial reason of morbidity and mortality. Mesenchymal stromal cells (MSCs) have garnered significant interest as a potential treatment for cerebral ischemic damage, as shown in ischemic stroke, because of their potent intrinsic features, which include self-regeneration, immunomodulation, and multi-potency. Additionally, MSCs are easily obtained, isolated, and cultured. Despite this, there are a number of obstacles that hinder the effectiveness of MSC-based treatment, such as adverse microenvironmental conditions both in vivo and in vitro. To overcome these obstacles, the naïve MSC has undergone a number of modification processes to enhance its innate therapeutic qualities. Genetic modification and preconditioning modification (with medications, growth factors, and other substances) are the two main categories into which these modification techniques can be separated. This field has advanced significantly and is still attracting attention and innovation. We examine these cutting-edge methods for preserving and even improving the natural biological functions and therapeutic potential of MSCs in relation to adhesion, migration, homing to the target site, survival, and delayed premature senescence. We address the use of genetically altered MSC in stroke-induced damage. Future strategies for improving the therapeutic result and addressing the difficulties associated with MSC modification are also discussed.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ola Kamal A Alkadir
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Vadim Samusenkov
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Behzadifard M, Aboutaleb N, Dolatshahi M, Khorramizadeh M, Mirshekari Jahangiri H, Kord Z, Nazarinia D. Neuroprotective Effects of Conditioned Medium of Mesenchymal Stem Cells (MSC-CM) as a Therapy for Ischemic Stroke Recovery: A Systematic Review. Neurochem Res 2022; 48:1280-1292. [PMID: 36581731 DOI: 10.1007/s11064-022-03848-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
It has been reported that the therapeutic potential of stem cells is mainly mediated by their paracrine factors. In order to identify the effects of conditioned medium of mesenchymal stem cells (MSC-CM) against stroke, a systematic review was conducted. We searched PubMed, Scopus, and ISI Web of Science databases for all available articles relevant to the effects of MSC-CM against the middle cerebral artery occlusion (MCAO) model of ischemic stroke until August 2022. The quality of the included studies was evaluated using The STAIR scale. During the systematic search, a total of 356 published articles were found. A total of 15 datasets were included following screening for eligibility. The type of cerebral ischemia was the MCAO model and CM was obtained from MSCs. The results showed that the therapeutic time window can be considered a crucial factor when researchers use MSC-CM for stroke therapy. In addition, MSC-CM therapy contributes to functional recovery and reduces infarct volume after stroke by targeting different cellular signaling pathways. Our findings showed that MSC-CM therapy has the ability to improve functional recovery and attenuate brain infarct volume after ischemic stroke in preclinical studies. We hope our study accelerates needed progress towards clinical trials.
Collapse
Affiliation(s)
- Mahin Behzadifard
- Department of Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Dolatshahi
- Department of Physiology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Maryam Khorramizadeh
- Department of Medical Physics, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | | | - Zeynab Kord
- Department of Anaesthesiology, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Donya Nazarinia
- Department of Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran. .,Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| |
Collapse
|
4
|
Asgari Taei A, Khodabakhsh P, Nasoohi S, Farahmandfar M, Dargahi L. Paracrine Effects of Mesenchymal Stem Cells in Ischemic Stroke: Opportunities and Challenges. Mol Neurobiol 2022; 59:6281-6306. [PMID: 35922728 DOI: 10.1007/s12035-022-02967-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
It is well acknowledged that neuroprotective effects of transplanted mesenchymal stem cells (MSCs) in ischemic stroke are attributed to their paracrine-mediated actions or bystander effects rather than to cell replacement in infarcted areas. This therapeutic plasticity is due to MSCs' ability to secrete a broad range of bioactive molecules including growth factors, trophic factors, cytokines, chemokines, and extracellular vesicles, overall known as the secretome. The secretome derivatives, such as conditioned medium (CM) or purified extracellular vesicles (EVs), exert remarkable advantages over MSC transplantation in stroke treating. Here, in this review, we used published information to provide an overview on the secretome composition of MSCs, underlying mechanisms of therapeutic effects of MSCs, and preclinical studies on MSC-derived products application in stroke. Furthermore, we discussed current advantages and challenges for successful bench-to-bedside translation.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Kim D, Kim S, Sung A, Patel N, Wong N, Conboy MJ, Conboy IM. Autologous treatment for ALS with implication for broad neuroprotection. Transl Neurodegener 2022; 11:16. [PMID: 35272709 PMCID: PMC8915496 DOI: 10.1186/s40035-022-00290-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/18/2022] [Indexed: 01/20/2023] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is characterized by a progressive loss of motor neurons (MNs), leading to paralysis, respiratory failure and death within 2–5 years of diagnosis. The exact mechanisms of sporadic ALS, which comprises 90% of all cases, remain unknown. In familial ALS, mutations in superoxide dismutase (SOD1) cause 10% of cases. Methods ALS patient-derived human-induced pluripotent stem cells (ALS hiPSCs, harboring the SOD1AV4 mutation), were differentiated to MNs (ALS-MNs). The neuroprotective effects of conditioned medium (CM) of hESCs (H9), wt hiPSCs (WTC-11) and the ALS iPSCs, on MN apoptosis and viability, formation and maintenance of neurites, mitochondrial activity and expression of inflammatory genes, were examined. For in vivo studies, 200 μl of CM from the ALS iPSCs (CS07 and CS053) was injected subcutaneously into the ALS model mice (transgenic for the human SOD1G93A mutation). Animal agility and strength, muscle innervation and mass, neurological score, onset of paralysis and lifespan of the ALS mice were assayed. After observing significant disease-modifying effects, the CM was characterized biochemically by fractionation, comparative proteomics, and epigenetic screens for the dependence on pluripotency. CM of fibroblasts that were differentiated from the wt hiPSCs lacked any neuroprotective activity and was used as a negative control throughout the studies. Results The secretome of PSCs including the ALS patient iPSCs was neuroprotective in the H2O2 model. In the model with pathogenic SOD1 mutation, ALS iPSC-CM attenuated all examined hallmarks of ALS pathology, rescued human ALS-MNs from denervation and death, restored mitochondrial health, and reduced the expression of inflammatory genes. The ALS iPSC-CM also improved neuro-muscular health and function, and delayed paralysis and morbidity in ALS mice. Compared side by side, cyclosporine (CsA), a mitochondrial membrane blocker that prevents the leakage of mitochondrial DNA, failed to avert the death of ALS-MNs, although CsA and ALS iPSC-CM equally stabilized MN mitochondria and attenuated inflammatory genes. Biochemical characterization, comparative proteomics, and epigenetic screen all suggested that it was the interactome of several key proteins from different fractions of PSC-CM that delivered the multifaceted neuroprotection. Conclusions This work introduces and mechanistically characterizes a new biologic for treating ALS and other complex neurodegenerative diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-022-00290-5.
Collapse
Affiliation(s)
- Daehwan Kim
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Subin Kim
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Ashley Sung
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Neetika Patel
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Nathan Wong
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Mesenchymal Stem Cells: Therapeutic Mechanisms for Stroke. Int J Mol Sci 2022; 23:ijms23052550. [PMID: 35269692 PMCID: PMC8910569 DOI: 10.3390/ijms23052550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Due to aging of the world’s population, stroke has become increasingly prevalent, leading to a rise in socioeconomic burden. In the recent past, stroke research and treatment have become key scientific issues that need urgent solutions, with a sharp focus on stem cell transplantation, which is known to treat neurodegenerative diseases related to traumatic brain injuries, such as stroke. Indeed, stem cell therapy has brought hope to many stroke patients, both in animal and clinical trials. Mesenchymal stem cells (MSCs) are most commonly utilized in biological medical research, due to their pluripotency and universality. MSCs are often obtained from adipose tissue and bone marrow, and transplanted via intravenous injection. Therefore, this review will discuss the therapeutic mechanisms of MSCs and extracellular vehicles (EVs) secreted by MSCs for stroke, such as in attenuating inflammation through immunomodulation, releasing trophic factors to promote therapeutic effects, inducing angiogenesis, promoting neurogenesis, reducing the infarct volume, and replacing damaged cells.
Collapse
|
7
|
Do PT, Wu CC, Chiang YH, Hu CJ, Chen KY. Mesenchymal Stem/Stromal Cell Therapy in Blood-Brain Barrier Preservation Following Ischemia: Molecular Mechanisms and Prospects. Int J Mol Sci 2021; 22:ijms221810045. [PMID: 34576209 PMCID: PMC8468469 DOI: 10.3390/ijms221810045] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is the leading cause of mortality and long-term disability worldwide. Disruption of the blood-brain barrier (BBB) is a prominent pathophysiological mechanism, responsible for a series of subsequent inflammatory cascades that exacerbate the damage to brain tissue. However, the benefit of recanalization is limited in most patients because of the narrow therapeutic time window. Recently, mesenchymal stem cells (MSCs) have been assessed as excellent candidates for cell-based therapy in cerebral ischemia, including neuroinflammatory alleviation, angiogenesis and neurogenesis promotion through their paracrine actions. In addition, accumulating evidence on how MSC therapy preserves BBB integrity after stroke may open up novel therapeutic targets for treating cerebrovascular diseases. In this review, we focus on the molecular mechanisms of MSC-based therapy in the ischemia-induced prevention of BBB compromise. Currently, therapeutic effects of MSCs for stroke are primarily based on the fundamental pathogenesis of BBB breakdown, such as attenuating leukocyte infiltration, matrix metalloproteinase (MMP) regulation, antioxidant, anti-inflammation, stabilizing morphology and crosstalk between cellular components of the BBB. We also discuss prospective studies to improve the effectiveness of MSC therapy through enhanced migration into defined brain regions of stem cells. Targeted therapy is a promising new direction and is being prioritized for extensive research.
Collapse
Affiliation(s)
- Phuong Thao Do
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Pediatrics, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Chung-Che Wu
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan; (C.-C.W.); (Y.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan; (C.-C.W.); (Y.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
| | - Chaur-Jong Hu
- TMU Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Neurology and Stroke Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Correspondence: (C.-J.H.); (K.-Y.C.); Tel.: +886-227361661 (ext. 3032) (C.-J.H.); +886-227361661 (ext. 7602) (K.-Y.C.)
| | - Kai-Yun Chen
- TMU Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-J.H.); (K.-Y.C.); Tel.: +886-227361661 (ext. 3032) (C.-J.H.); +886-227361661 (ext. 7602) (K.-Y.C.)
| |
Collapse
|
8
|
Wicha P, Das S, Mahakkanukrauh P. Blood-brain barrier dysfunction in ischemic stroke and diabetes: the underlying link, mechanisms and future possible therapeutic targets. Anat Cell Biol 2021; 54:165-177. [PMID: 33658432 PMCID: PMC8225477 DOI: 10.5115/acb.20.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/27/2020] [Accepted: 01/30/2021] [Indexed: 01/04/2023] Open
Abstract
Ischemic stroke caused by occlusion of cerebral artery is responsible for the majority of stroke that increases the morbidity and mortality worldwide. Diabetes mellitus (DM) is a crucial risk factor for ischemic stroke. Prolonged DM causes various microvascular and macrovascular changes, and blood-brain barrier (BBB) permeability that facilitates inflammatory response following stroke. In the acute phase following stroke, BBB disruption has been considered the initial step that induces neurological deficit and functional disabilities. Stroke outcomes are significantly worse among DM. In this article, we review stroke with diabetes-induce BBB damage, as well as underlying mechanism and possible therapeutic targets for stroke with diabetes.
Collapse
Affiliation(s)
- Piyawadee Wicha
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Srijit Das
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence in Osteology Research and Training Center (ORTC), Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Tongu EADO, Segabinazzi LGTM, Alvarenga ML, Monteiro A, Papa FO, Alvarenga MA. Allogenic mesenchymal stem cell-conditioned medium does not affect sperm parameters and mitigates early endometrial inflammatory responses in mares. Theriogenology 2021; 169:1-8. [PMID: 33887520 DOI: 10.1016/j.theriogenology.2021.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022]
Abstract
This study aimed to evaluate the effects of mesenchymal stem cell-conditioned medium (MSC-CM) on sperm parameters, intrauterine polymorphonuclear neutrophils (PMN), intrauterine fluid accumulation (IUF), and fertility in mares. In experiment 1, two ejaculates from ten stallions were extended to 50 million sperm/mL using a milk-based extender. Thereafter, 20 mL of extended semen was added of MSC-CM as follows: 0, 5, 10, 15, and 20 mL. Sperm kinetics and plasma membrane integrity were evaluated immediately after dilution (T0) and 2 h post-incubation at 37 °C (T2). In experiment 2, mares characterized as resistant (n = 13) or susceptible (n = 7) to endometritis were inseminated with fresh semen 24 h post-induction of ovulation in two (Control and CM-1) and three (Control, CM-1, and CM-2) cycles in a crossover, as follows: control, no pharmacological interference; CM-1, supplementation of semen insemination dose at 3:4 (v:v, MSC-CM:semen); CM-2, 30 mL of MSC-CM was infused into the uterus 24 h before insemination. Endometrial cytology and uterine fluid were collected 6 and 24 h after insemination to evaluate the number of PMNs and concentrations of interleukins IL6, IL10, and TNFα. IUF was determined by ultrasonography 24 and 48 h after insemination. Pregnancy status was diagnosed 14 days after ovulation. The addition of MSC-CM to semen did not influence sperm parameters at T0 and T2 (P > 0.05) and reduced (CM-1; P < 0.05) the number of PMNs at 6 h post-insemination in resistant mares. In susceptible mares, PMNs at 6 and 24 h post-insemination, as well as IUF were reduced (P < 0.05) in both treated cycles (CM-1 and CM-2). In addition, MSC-CM downregulated IL6 and upregulated IL10 concentrations in the uterus of susceptible mares after insemination. There were no differences in fertility rates among groups both in resistant (Control, 77%, 10/13; CM-1, 62%, 8/13) and susceptible mares (Control, 42.8%, 3/7; CM-1, 57.1%, 4/7; CM-2, 85.7%. 6/7). In conclusion, MSC-CM did not affect sperm parameters when mixed with diluted semen, and reduced post-insemination inflammatory responses in mares.
Collapse
Affiliation(s)
- Eriky Akio de Oliveira Tongu
- Department of Veterinary Surgery and Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Lorenzo G T M Segabinazzi
- Department of Veterinary Surgery and Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Marina Landim Alvarenga
- Department of Veterinary Surgery and Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Aldine Monteiro
- Department of Veterinary Surgery and Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Frederico Ozanam Papa
- Department of Veterinary Surgery and Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil
| | - Marco Antonio Alvarenga
- Department of Veterinary Surgery and Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, FMVZ, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, Botucatu, Brazil.
| |
Collapse
|
10
|
Gao L, Song Z, Mi J, Hou P, Xie C, Shi J, Li Y, Manaenko A. The Effects and Underlying Mechanisms of Cell Therapy on Blood-Brain Barrier Integrity After Ischemic Stroke. Curr Neuropharmacol 2020; 18:1213-1226. [PMID: 32928089 PMCID: PMC7770640 DOI: 10.2174/1570159x18666200914162013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Ischemic stroke is one of the main causes of mortality and disability worldwide. However, efficient therapeutic strategies are still lacking. Stem/progenitor cell-based therapy, with its vigorous advantages, has emerged as a promising tool for the treatment of ischemic stroke. The mechanisms involve new neural cells and neuronal circuitry formation, antioxidation, inflammation alleviation, angiogenesis, and neurogenesis promotion. In the past decades, in-depth studies have suggested that cell therapy could promote vascular stabilization and decrease blood-brain barrier (BBB) leakage after ischemic stroke. However, the effects and underlying mechanisms on BBB integrity induced by the engrafted cells in ischemic stroke have not been reviewed yet. Herein, we will update the progress in research on the effects of cell therapy on BBB integrity after ischemic stroke and review the underlying mechanisms. First, we will present an overview of BBB dysfunction under the ischemic condition and cells engraftment for ischemic treatment. Then, we will summarize and discuss the current knowledge about the effects and underlying mechanisms of cell therapy on BBB integrity after ischemic stroke. In particular, we will review the most recent studies in regard to the relationship between cell therapy and BBB in tissue plasminogen activator (t-PA)-mediated therapy and diabetic stroke.
Collapse
Affiliation(s)
- Li Gao
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Zhenghong Song
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Jianhua Mi
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Pinpin Hou
- Central Laboratory, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University,
Shanghai 201112, China
| | - Chong Xie
- Departmeng of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianquan Shi
- Departmeng of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yansheng Li
- Department of Neurology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Anatol Manaenko
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
11
|
Liu B, Ye X, Zhao G, Jin L, Shi J. Association of RAGE with acute ischemic stroke prognosis in type 2 diabetes. Ir J Med Sci 2020; 190:625-630. [PMID: 32989654 DOI: 10.1007/s11845-020-02385-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND In experimental models, the receptor for advanced glycation end products (RAGE) has been reported as a key mediator in cerebral ischemia. In this study, the clinical significance of serum RAGE levels in acute ischemic stroke patients with type 2 diabetes was determined. METHOD Three hundred seven patients (165 patients without diabetes and 142 patients with diabetes) with acute cerebral infarction (ACI) were enrolled over 3 consecutive months. On admission, their National Institute of Health Stroke Scale (NIHSS) scores were recorded. The clinical laboratory data of all subjects were collected, and their serum levels of RAGE were assayed using enzyme-linked immunosorbent assay (ELISA). On admission and 3 months after stroke, the clinical outcomes were assessed using the Barthel index (BI) and modified Rankin scale (mRS). RESULTS Patients with diabetes (PwD) had significantly higher levels of triglycerides (TGs), RAGE, fasting blood glucose (FBG), glycosylated hemoglobin A1c (HbA1c), and worse stroke prognosis than patients without diabetes (p < 0.05). Hypertension history, RAGE, and FBG in patients without diabetes in ischemic stroke were increased, relative to stroke prognosis. Weight, RAGE, and FBG data showed significant correlation with stroke outcome in PwD (p < 0.05). Multiple logistic regression analysis indicated that the RAGE level was an independent risk factor for poor prognosis of stroke, especially in PwD with ACI (p < 0.05). CONCLUSION Acute ischemic stroke is associated with elevated serum RAGE level, which, at admission, is an independent predictor of poor outcome for stroke in type 2 diabetes.
Collapse
Affiliation(s)
- Bin Liu
- Department of Geriatrics, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, Jiangsu Province, China.
| | - Xinchun Ye
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Guifeng Zhao
- Department Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shenyang, Liaoning Province, China
| | - Ling Jin
- Department of Geriatrics, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, Jiangsu Province, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital to Nanjing Medical University, Nanjing Brain Hospital, No. 264,Guangzhou Road, Nanjing, 210000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
12
|
Exosomes derived from bone marrow mesenchymal stem cells harvested from type two diabetes rats promotes neurorestorative effects after stroke in type two diabetes rats. Exp Neurol 2020; 334:113456. [PMID: 32889008 DOI: 10.1016/j.expneurol.2020.113456] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 08/30/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE Diabetes elevates the risk of stroke, promotes inflammation, and exacerbates vascular and white matter damage post stroke, thereby hindering long term functional recovery. Here, we investigated the neurorestorative effects and the underlying therapeutic mechanisms of treatment of stroke in type 2 diabetic rats (T2DM) using exosomes harvested from bone marrow stromal cells obtained from T2DM rats (T2DM-MSC-Exo). METHODS T2DM was induced in adult male Wistar rats using a combination of high fat diet and Streptozotocin. Rats were subjected to transient 2 h middle cerebral artery occlusion (MCAo) and 3 days later randomized to one of the following treatment groups: 1) phosphate-buffered-saline (PBS, i.v), 2) T2DM-MSC-Exo, (3 × 1011, i.v), 3) T2DM-MSC-Exo with miR-9 over expression (miR9+/+-T2DM-MSC-Exo, 3 × 1011, i.v) or 4) MSC-Exo derived from normoglycemic rats (Nor-MSC-Exo) (3 × 1011, i.v). T2DM sham control group is included as reference. Rats were sacrificed 28 days after MCAo. RESULTS T2DM-MSC-Exo treatment does not alter blood glucose, lipid levels, or lesion volume, but significantly improves neurological function and attenuates post-stroke weight loss compared to PBS treated as well as Nor-MSC-Exo treated T2DM-stroke rats. Compared to PBS treatment, T2DM-MSC-Exo treatment of T2DM-stroke rats significantly 1) increases tight junction protein ZO-1 and improves blood brain barrier (BBB) integrity; 2) promotes white matter remodeling indicated by increased axon and myelin density, and increases oligodendrocytes and oligodendrocyte progenitor cell numbers in the ischemic border zone as well as increases primary cortical neuronal axonal outgrowth; 3) decreases activated microglia, M1 macrophages, and inflammatory factors MMP-9 (matrix mettaloproteinase-9) and MCP-1 (monocyte chemoattractant protein-1) expression in the ischemic brain; and 4) decreases miR-9 expression in serum, and increases miR-9 target ABCA1 (ATP-binding cassette transporter 1) and IGFR1 (Insulin-like growth factor 1 receptor) expression in the brain. MiR9+/+-T2DM-MSC-Exo treatment significantly increases serum miR-9 expression compared to PBS treated and T2DM-MSC-Exo treated T2DM stroke rats. Treatment of T2DM stroke with miR9+/+-T2DM-MSC-Exo fails to improve functional outcome and attenuates T2DM-MSC-Exo treatment induced white matter remodeling and anti-inflammatory effects in T2DM stroke rats. CONCLUSIONS T2DM-MSC-Exo treatment for stroke in T2DM rats promotes neurorestorative effects and improves functional outcome. Down regulation of miR-9 expression and increasing its target ABCA1 pathway may contribute partially to T2DM-MSC-Exo treatment induced white matter remodeling and anti-inflammatory responses.
Collapse
|
13
|
Ma QQ, Liu FY, Shi M, Sun CH, Tan Z, Chang XD, Li QP, Feng ZC. Bone marrow mesenchymal stem cells modified by angiogenin-1 promotes tissue repair in mice with oxygen-induced retinopathy of prematurity by promoting retinal stem cell proliferation and differentiation. J Cell Physiol 2019; 234:21027-21038. [PMID: 31106420 DOI: 10.1002/jcp.28706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
Retinopathy has become one of the major factors that lead to blindness worldwide. Although many clinical therapies are concerned about such disease, most of them focus on symptoms alleviation. In this study, we aim to investigate whether coculture retinal stem cells (RSCs) with bone marrow mesenchymal stem cells transfected with angiogenin-1 (Ang-1-BMSCs) affects the damaged retinal tissue of oxygen-induced retinopathy of prematurity (OIR-ROP) mice. After OIR-ROP mouse model establishment, Ang-1-BMSCs, RSCs, and OIR-ROP retinal tissues were cocultured in a a transwell chamber. RSCs proliferation and the expression of Ang-1, insulin-like growth factor-1 (IGF-1) in the supernatant of RSCs, as well as β-tubulin and protein kinase C (PKC) expression were evaluated. Finally, the repair of OIR-ROP mice retinal tissues was observed by injecting Ang-1-BMSCs + RSCs. In the OIR-ROP mouse model, RSCs cocultured with OIR-ROP retinal tissues could be induced to differentiate into cells expressing β-tubulin and PKC and promote the expression of Ang-1 and IGF-1. coculture of Ang-1-BMSCs further enhanced the proliferation and differentiation of RSCs by promoting the expression of Ang-1 and IGF-1. Coculture of RSCs + Ang-1-BMSCs induced differentiation of Ang-1-BMSCs through interaction among intercellular factors and restored the damaged retinal tissue of OIR-ROP mice. Collectively, our study provided evidence that coculture of Ang-1-BMSCs and RSCs could promote the proliferation and differentiation of RSCs and improve the treatment for the damaged retina tissue of OIR-ROP mice.
Collapse
Affiliation(s)
- Qian-Qian Ma
- Department of Neonatology, NICU of Binzhou Medical University Hospital, Binzhou, People's Republic of China.,BaYi Children's Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Fang-Yu Liu
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, People's Republic of China
| | - Meng Shi
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, People's Republic of China
| | - Chang-Hua Sun
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, People's Republic of China
| | - Zhu Tan
- BaYi Children's Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Xiao-Dan Chang
- BaYi Children's Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Qiu-Ping Li
- BaYi Children's Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Zhi-Chun Feng
- BaYi Children's Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
14
|
Laso-García F, Diekhorst L, Gómez-de Frutos MC, Otero-Ortega L, Fuentes B, Ruiz-Ares G, Díez-Tejedor E, Gutiérrez-Fernández M. Cell-Based Therapies for Stroke: Promising Solution or Dead End? Mesenchymal Stem Cells and Comorbidities in Preclinical Stroke Research. Front Neurol 2019; 10:332. [PMID: 31024426 PMCID: PMC6467162 DOI: 10.3389/fneur.2019.00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/19/2019] [Indexed: 01/11/2023] Open
Abstract
Stroke is a major health problem worldwide. It has been estimated that 90% of the population attributable risk of stroke is due to risk factors such as aging, hypertension, hyperglycemia, diabetes mellitus and obesity, among others. However, most animal models of stroke use predominantly healthy and young animals. These models ignore the main comorbidities associated with cerebrovascular disease, which could be one explanation for the unsuccessful bench-to-bedside translation of protective and regenerative strategies by not taking the patient's situation into account. This lack of success makes it important to incorporate comorbidities into animal models of stroke in order to study the effects of the various therapeutic strategies tested. Regarding cell therapy, the administration of stem cells in the acute and chronic phases has been shown to be safe and effective in experimental animal models of stroke. This review aims to show the results of studies with promising new therapeutic strategies such as mesenchymal stem cells, which are being tested in preclinical models of stroke associated with comorbidities and in elderly animals.
Collapse
Affiliation(s)
- Fernando Laso-García
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| | - Luke Diekhorst
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| | - Mari Carmen Gómez-de Frutos
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| | - Laura Otero-Ortega
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| | - Blanca Fuentes
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| | - Gerardo Ruiz-Ares
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| | - María Gutiérrez-Fernández
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Madrid, Spain
| |
Collapse
|
15
|
Gunawardena TNA, Rahman MT, Abdullah BJJ, Abu Kasim NH. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. J Tissue Eng Regen Med 2019; 13:569-586. [PMID: 30644175 DOI: 10.1002/term.2806] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 10/26/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Recent studies suggest that the main driving force behind the therapeutic activity observed in mesenchymal stem cells (MSCs) are the paracrine factors secreted by these cells. These biomolecules also trigger antiapoptotic events to prevent further degeneration of the diseased organ through paracrine signalling mechanisms. In comparison with the normal physiological conditions, an increased paracrine gradient is observed within the peripheral system of diseased organs that enhances the migration of tissue-specific MSCs towards the site of infection or injury to promote healing. Thus, upon administration of conditioned media derived from mesenchymal stem cell cultures (MSC-CM) could contribute in maintaining the increased paracrine factor gradient between the diseased organ and the stem cell niche in order to speed up the process of recovery. Based on the principle of the paracrine signalling mechanism, MSC-CM, also referred as the secretome of the MSCs, is a rich source of the paracrine factors and are being studied extensively for a wide range of regenerative therapies such as myocardial infarction, stroke, bone regeneration, hair growth, and wound healing. This article highlights the current technological applications and advances of MSC-CM with the aim to appraise its future potential as a regenerative therapeutic agent.
Collapse
Affiliation(s)
| | - Mohammad Tariqur Rahman
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Kay AG, Long G, Tyler G, Stefan A, Broadfoot SJ, Piccinini AM, Middleton J, Kehoe O. Mesenchymal Stem Cell-Conditioned Medium Reduces Disease Severity and Immune Responses in Inflammatory Arthritis. Sci Rep 2017; 7:18019. [PMID: 29269885 PMCID: PMC5740178 DOI: 10.1038/s41598-017-18144-w] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
We evaluated the therapeutic potential of mesenchymal stem cell-conditioned medium (CM-MSC) as an alternative to cell therapy in an antigen-induced model of arthritis (AIA). Disease severity and cartilage loss were evaluated by histopathological analysis of arthritic knee joints and immunostaining of aggrecan neoepitopes. Cell proliferation was assessed for activated and naïve CD4+ T cells from healthy mice following culture with CM-MSC or co-culture with MSCs. T cell polarization was analysed in CD4+ T cells isolated from spleens and lymph nodes of arthritic mice treated with CM-MSC or MSCs. CM-MSC treatment significantly reduced knee-joint swelling, histopathological signs of AIA, cartilage loss and suppressed TNFα induction. Proliferation of CD4+ cells from spleens of healthy mice was not affected by CM-MSC but reduced when cells were co-cultured with MSCs. In the presence of CM-MSC or MSCs, increases in IL-10 concentration were observed in culture medium. Finally, CD4+ T cells from arthritic mice treated with CM-MSC showed increases in FOXP3 and IL-4 expression and positively affected the Treg:Th17 balance in the tissue. CM-MSC treatment reduces cartilage damage and suppresses immune responses by reducing aggrecan cleavage, enhancing Treg function and adjusting the Treg:Th17 ratio. CM-MSC may provide an effective cell-free therapy for inflammatory arthritis.
Collapse
Affiliation(s)
- Alasdair G Kay
- Biology Department, University of York, Wentworth Way, York, UK.,ISTM at RJAH Orthopaedic Hospital, Keele University, Oswestry, UK
| | - Grace Long
- School of Medicine, Keele University, Staffordshire, UK
| | - George Tyler
- School of Medicine, Keele University, Staffordshire, UK
| | - Andrei Stefan
- ISTM at RJAH Orthopaedic Hospital, Keele University, Oswestry, UK
| | | | | | - Jim Middleton
- Faculty of Health Sciences, School of Oral and Dental Science, University of Bristol, Bristol, UK
| | - Oksana Kehoe
- ISTM at RJAH Orthopaedic Hospital, Keele University, Oswestry, UK.
| |
Collapse
|