1
|
Pavešković M, De-Paula RB, Ojelade SA, Tantry EK, Kochukov MY, Bao S, Veeraragavan S, Garza AR, Srivastava S, Song SY, Fujita M, Duong DM, Bennett DA, De Jager PL, Seyfried NT, Dickinson ME, Heaney JD, Arenkiel BR, Shulman JM. Alzheimer's disease risk gene CD2AP is a dose-sensitive determinant of synaptic structure and plasticity. Hum Mol Genet 2024; 33:1815-1832. [PMID: 39146503 PMCID: PMC11458016 DOI: 10.1093/hmg/ddae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/15/2024] [Indexed: 08/17/2024] Open
Abstract
CD2-Associated protein (CD2AP) is a candidate susceptibility gene for Alzheimer's disease, but its role in the mammalian central nervous system remains largely unknown. We show that CD2AP protein is broadly expressed in the adult mouse brain, including within cortical and hippocampal neurons, where it is detected at pre-synaptic terminals. Deletion of Cd2ap altered dendritic branching and spine density, and impaired ubiquitin-proteasome system activity. Moreover, in mice harboring either one or two copies of a germline Cd2ap null allele, we noted increased paired-pulse facilitation at hippocampal Schaffer-collateral synapses, consistent with a haploinsufficient requirement for pre-synaptic release. Whereas conditional Cd2ap knockout in the brain revealed no gross behavioral deficits in either 3.5- or 12-month-old mice, Cd2ap heterozygous mice demonstrated subtle impairments in discrimination learning using a touchscreen task. Based on unbiased proteomics, partial or complete loss of Cd2ap triggered perturbation of proteins with roles in protein folding, lipid metabolism, proteostasis, and synaptic function. Overall, our results reveal conserved, dose-sensitive requirements for CD2AP in the maintenance of neuronal structure and function, including synaptic homeostasis and plasticity, and inform our understanding of possible cell-type specific mechanisms in Alzheimer's Disease.
Collapse
Affiliation(s)
- Matea Pavešković
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Ruth B De-Paula
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Quantitative and Computational Biology Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Shamsideen A Ojelade
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Evelyne K Tantry
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Mikhail Y Kochukov
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Suyang Bao
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Surabi Veeraragavan
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Alexandra R Garza
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Snigdha Srivastava
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Si-Yuan Song
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, United States
| | - Duc M Duong
- Departments of Biochemistry and Neurology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, 600 S. Paulina Street, Chicago, IL 60612, United States
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, United States
| | - Nicholas T Seyfried
- Departments of Biochemistry and Neurology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Mary E Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Benjamin R Arenkiel
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Joshua M Shulman
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Houston, TX 77030, United States
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|
2
|
Guo Y, Li X, Gao K, Sun X. Impact of anxiety profiles in trait anxiety on visual discrimination performance in Wistar rats. Neurosci Lett 2024; 838:137920. [PMID: 39111652 DOI: 10.1016/j.neulet.2024.137920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Affiliation(s)
- Yifan Guo
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, PR China
| | - Xianglei Li
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, PR China
| | - Kai Gao
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, PR China
| | - Xiuping Sun
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, PR China.
| |
Collapse
|
3
|
Mercaldo V, Vidimova B, Gastaldo D, Fernández E, Lo AC, Cencelli G, Pedini G, De Rubeis S, Longo F, Klann E, Smit AB, Grant SGN, Achsel T, Bagni C. Altered striatal actin dynamics drives behavioral inflexibility in a mouse model of fragile X syndrome. Neuron 2023; 111:1760-1775.e8. [PMID: 36996810 DOI: 10.1016/j.neuron.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
The proteome of glutamatergic synapses is diverse across the mammalian brain and involved in neurodevelopmental disorders (NDDs). Among those is fragile X syndrome (FXS), an NDD caused by the absence of the functional RNA-binding protein FMRP. Here, we demonstrate how the brain region-specific composition of postsynaptic density (PSD) contributes to FXS. In the striatum, the FXS mouse model shows an altered association of the PSD with the actin cytoskeleton, reflecting immature dendritic spine morphology and reduced synaptic actin dynamics. Enhancing actin turnover with constitutively active RAC1 ameliorates these deficits. At the behavioral level, the FXS model displays striatal-driven inflexibility, a typical feature of FXS individuals, which is rescued by exogenous RAC1. Striatal ablation of Fmr1 is sufficient to recapitulate behavioral impairments observed in the FXS model. These results indicate that dysregulation of synaptic actin dynamics in the striatum, a region largely unexplored in FXS, contributes to the manifestation of FXS behavioral phenotypes.
Collapse
Affiliation(s)
- Valentina Mercaldo
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Barbora Vidimova
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Denise Gastaldo
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Esperanza Fernández
- VIB & UGent Center for Medical Biotechnology, Universiteit Gent, 9052 Ghent, Belgium
| | - Adrian C Lo
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland
| | - Giulia Cencelli
- Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy; Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Friedman Brain Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesco Longo
- Center for Neural Science, New York University, New York, NY 10029, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10029, USA
| | - August B Smit
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Seth G N Grant
- Center for the Clinical Brain Sciences and Simons Initiatives for the Developing Brain, The University of Edinburgh, Edinburgh EH16 4SB, Scotland
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland.
| | - Claudia Bagni
- Department of Fundamental Neurosciences, Université de Lausanne, 1005 Lausanne, Switzerland; Department of Biomedicine and Prevention, Università degli Studi di Roma "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
4
|
Shepherd A, Zhang T, Hoffmann LB, Zeleznikow-Johnston AM, Churilov L, Hannan AJ, Burrows EL. A Preclinical Model of Computerized Cognitive Training: Touchscreen Cognitive Testing Enhances Cognition and Hippocampal Cellular Plasticity in Wildtype and Alzheimer's Disease Mice. Front Behav Neurosci 2021; 15:766745. [PMID: 34938165 PMCID: PMC8685297 DOI: 10.3389/fnbeh.2021.766745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022] Open
Abstract
With the growing popularity of touchscreen cognitive testing in rodents, it is imperative to understand the fundamental effects exposure to this paradigm can have on the animals involved. In this study, we set out to assess hippocampal-dependant learning in the APP/PS1 mouse model of Alzheimer’s disease (AD) on two highly translatable touchscreen tasks – the Paired Associate Learning (PAL) task and the Trial Unique Non-Matching to Location (TUNL) task. Both of these tests are based on human tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB) and are sensitive to deficits in both mild cognitive impairment (MCI) and AD. Mice were assessed for deficits in PAL at 9–12 months of age, then on TUNL at 8–11 and 13–16 months. No cognitive deficits were evident in APP/PS1 mice at any age, contrary to previous reports using maze-based learning and memory tasks. We hypothesized that daily and long-term touchscreen training may have inadvertently acted as a cognitive enhancer. When touchscreen-tested mice were assessed on the Morris water maze, they showed improved task acquisition compared to naïve APP/PS1 mice and wild-type (WT) littermate controls. In addition, we show that touchscreen-trained WT and APP/PS1 mice show increased cell proliferation and immature neuron numbers in the dentate gyrus compared to behaviorally naïve WT and APP/PS1 mice. This result indicates that the touchscreen testing paradigm could improve cognitive performance, and/or mask an impairment, in experimental mouse models. This touchscreen-induced cognitive enhancement may involve increased neurogenesis, and possibly other forms of cellular plasticity. This is the first study to show increased numbers of proliferating cells and immature neurons in the hippocampus following touchscreen testing, and that touchscreen training can improve cognitive performance in maze-based spatial navigation tasks. This potential for touchscreen testing to induce cognitive enhancement, or other phenotypic shifts, in preclinical models should be considered in study design. Furthermore, touchscreen-mediated cognitive enhancement could have therapeutic implications for cognitive disorders.
Collapse
Affiliation(s)
- Amy Shepherd
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Tracy Zhang
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Lucas B Hoffmann
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Ariel M Zeleznikow-Johnston
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Leonid Churilov
- Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Effects of chronic tramadol administration on cognitive flexibility in mice. Psychopharmacology (Berl) 2021; 238:2883-2893. [PMID: 34173033 DOI: 10.1007/s00213-021-05903-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Tramadol is widely used for pain relief especially in seniors. However, long-term use of tramadol has serious adverse effects, including cognitive impairment. Besides its memory effects, already demonstrated in animals, a recent clinical report suggests that tramadol could also affect executive function in seniors. Several studies have hypothesized that the anti-muscarinic properties of tramadol could be responsible for the deleterious effects of tramadol on cognition. OBJECTIVES We aimed at investigating the effects of chronic administration of tramadol on cognitive flexibility in adult male mice, as assessed by a visual discrimination reversal task using a touchscreen device. The effects of tramadol were further compared to those of scopolamine, a reference muscarinic antagonist. RESULTS We found that, during the early phase of the reversal task, when cognitive flexibility is most in demand, both tramadol-treated mice (20 mg/kg, s.c., twice a day) and scopolamine-treated mice (0.5 mg/kg, s.c., twice a day) needed more correction trials and showed a higher perseveration index than saline-treated mice. Therefore, tramadol affects cognitive flexibility, and its anticholinergic properties could be at least partly involved in these deficits. CONCLUSIONS In view of these deleterious cognitive effects of tramadol, physicians should be cautious when prescribing this analgesic, especially in seniors who are more vulnerable to adverse drug events and in which alternative prescription should be preferred whenever possible.
Collapse
|
6
|
Progressive impairments in executive function in the APP/PS1 model of Alzheimer's disease as measured by translatable touchscreen testing. Neurobiol Aging 2021; 108:58-71. [PMID: 34509856 DOI: 10.1016/j.neurobiolaging.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Executive function deficits in Alzheimer's disease (AD) occur early in disease progression and may be predictive of cognitive decline. However, no preclinical studies have identified deficits in rewarded executive function in the commonly used APPSwe/PS1∆E9 (APP/PS1) mouse model. To address this, we assessed 12-26 month old APP/PS1 mice on rewarded reversal and/or extinction tasks. 16-month-old, but not 13- or 26-month-old, APP/PS1 mice showed an attenuated rate of extinction. Reversal deficits were seen in 22-month-old, but not 13-month-old APP/PS1 animals. We then confirmed that impairments in reversal were unrelated to previously reported visual impairments in both AD mouse models and humans. Age, but not genotype, had a significant effect on markers of retinal health, indicating the deficits seen in APP/PS1 mice were directly related to cognition. This is the first characterisation of rewarded executive function in APP/PS1 mice, and has great potential to facilitate translation from preclinical models to the clinic.
Collapse
|
7
|
Palmer D, Dumont JR, Dexter TD, Prado MAM, Finger E, Bussey TJ, Saksida LM. Touchscreen cognitive testing: Cross-species translation and co-clinical trials in neurodegenerative and neuropsychiatric disease. Neurobiol Learn Mem 2021; 182:107443. [PMID: 33895351 DOI: 10.1016/j.nlm.2021.107443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 01/06/2023]
Abstract
Translating results from pre-clinical animal studies to successful human clinical trials in neurodegenerative and neuropsychiatric disease presents a significant challenge. While this issue is clearly multifaceted, the lack of reproducibility and poor translational validity of many paradigms used to assess cognition in animal models are central contributors to this challenge. Computer-automated cognitive test batteries have the potential to substantially improve translation between pre-clinical studies and clinical trials by increasing both reproducibility and translational validity. Given the structured nature of data output, computer-automated tests also lend themselves to increased data sharing and other open science good practices. Over the past two decades, computer automated, touchscreen-based cognitive testing methods have been developed for non-human primate and rodent models. These automated methods lend themselves to increased standardization, hence reproducibility, and have become increasingly important for the elucidation of the neurobiological basis of cognition in animal models. More recently, there have been increased efforts to use these methods to enhance translational validity by developing task batteries that are nearly identical across different species via forward (i.e., translating animal tasks to humans) and reverse (i.e., translating human tasks to animals) translation. An additional benefit of the touchscreen approach is that a cross-species cognitive test battery makes it possible to implement co-clinical trials-an approach developed initially in cancer research-for novel treatments for neurodegenerative disorders. Co-clinical trials bring together pre-clinical and early clinical studies, which facilitates testing of novel treatments in mouse models with underlying genetic or other changes, and can help to stratify patients on the basis of genetic, molecular, or cognitive criteria. This approach can help to determine which patients should be enrolled in specific clinical trials and can facilitate repositioning and/or repurposing of previously approved drugs. This has the potential to mitigate the resources required to study treatment responses in large numbers of human patients.
Collapse
Affiliation(s)
- Daniel Palmer
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada.
| | - Julie R Dumont
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; BrainsCAN, The University of Western Ontario, Ontario, Canada
| | - Tyler D Dexter
- Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Graduate Program in Neuroscience, The University of Western Ontario, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Graduate Program in Neuroscience, The University of Western Ontario, Ontario, Canada; Department of Anatomy and Cell Biology, The University of Western Ontario, Ontario, Canada
| | - Elizabeth Finger
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Clinical Neurological Sciences, The University of Western Ontario, Ontario, Canada; Lawson Health Research Institute, Ontario, Canada; Parkwood Institute, St. Josephs Health Care, Ontario, Canada
| | - Timothy J Bussey
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| | - Lisa M Saksida
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| |
Collapse
|
8
|
Horner AE, Norris RH, McLaren-Jones R, Alexander L, Komiyama NH, Grant SGN, Nithianantharajah J, Kopanitsa MV. Learning and reaction times in mouse touchscreen tests are differentially impacted by mutations in genes encoding postsynaptic interacting proteins SYNGAP1, NLGN3, DLGAP1, DLGAP2 and SHANK2. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12723. [PMID: 33347690 PMCID: PMC7615670 DOI: 10.1111/gbb.12723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
The postsynaptic terminal of vertebrate excitatory synapses contains a highly conserved multiprotein complex that comprises neurotransmitter receptors, cell-adhesion molecules, scaffold proteins and enzymes, which are essential for brain signalling and plasticity underlying behaviour. Increasingly, mutations in genes that encode postsynaptic proteins belonging to the PSD-95 protein complex, continue to be identified in neurodevelopmental disorders (NDDs) such as autism spectrum disorder, intellectual disability and epilepsy. These disorders are highly heterogeneous, sharing genetic aetiology and comorbid cognitive and behavioural symptoms. Here, by using genetically engineered mice and innovative touchscreen-based cognitive testing, we sought to investigate whether loss-of-function mutations in genes encoding key interactors of the PSD-95 protein complex display shared phenotypes in associative learning, updating of learned associations and reaction times. Our genetic dissection of mice with loss-of-function mutations in Syngap1, Nlgn3, Dlgap1, Dlgap2 and Shank2 showed that distinct components of the PSD-95 protein complex differentially regulate learning, cognitive flexibility and reaction times in cognitive processing. These data provide insights for understanding how human mutations in these genes lead to the manifestation of diverse and complex phenotypes in NDDs.
Collapse
Affiliation(s)
| | - Rebecca H Norris
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | | | | | - Noboru H Komiyama
- Genes to Cognition Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Seth G N Grant
- Genes to Cognition Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jess Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Maksym V Kopanitsa
- Synome Ltd, Babraham Research Campus, Cambridge, UK
- UK Dementia Research Institute and Department of Brain Sciences, Imperial College, London, UK
| |
Collapse
|
9
|
Saifullah MAB, Komine O, Dong Y, Fukumoto K, Sobue A, Endo F, Saito T, Saido TC, Yamanaka K, Mizoguchi H. Touchscreen-based location discrimination and paired associate learning tasks detect cognitive impairment at an early stage in an App knock-in mouse model of Alzheimer's disease. Mol Brain 2020; 13:147. [PMID: 33183323 PMCID: PMC7664057 DOI: 10.1186/s13041-020-00690-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline with accumulation of amyloid beta (Aβ) and neurofibrillary tangles that usually begins 15–30 years before clinical diagnosis. Rodent models that recapitulate aggressive Aβ and/or the pathology of neurofibrillary tangles are essential for AD research. Accordingly, non-invasive early detection systems in these animal models are required to evaluate the phenotypic changes, elucidate the mechanism of disease progression, and facilitate development of novel therapeutic approaches. Although many behavioral tests efficiently reveal cognitive impairments at the later stage of the disease in AD models, it has been challenging to detect such impairments at the early stage. To address this issue, we subjected 4–6-month-old male AppNL−G−F/NL−G−F knock-in (App-KI) mice to touchscreen-based location discrimination (LD), different object–location paired-associate learning (dPAL), and reversal learning tests, and compared the results with those of the classical Morris water maze test. These tests are mainly dependent on the brain regions prone to Aβ accumulation at the earliest stages of the disease. At 4–6 months, considered to represent the early stage of disease when mice exhibit initial deposition of Aβ and slight gliosis, the classical Morris water maze test revealed no difference between groups, whereas touchscreen-based LD and dPAL tasks revealed significant impairments in task performance. Our report is the first to confirm that a systematic touchscreen-based behavioral test battery can sensitively detect the early stage of cognitive decline in an AD-linked App-KI mouse model. This system could be applied in future translational research.
Collapse
Affiliation(s)
- Md Ali Bin Saifullah
- Research Center for Next-Generation Drug Development, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yutao Dong
- Research Center for Next-Generation Drug Development, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan.,Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8560, Japan
| | - Kazuya Fukumoto
- Research Center for Next-Generation Drug Development, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Akira Sobue
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Takashi Saito
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan.,Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Hiroyuki Mizoguchi
- Research Center for Next-Generation Drug Development, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan. .,Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8560, Japan.
| |
Collapse
|
10
|
Kopanitsa MV, Lehtimäki KK, Forsman M, Suhonen A, Koponen J, Piiponniemi TO, Kärkkäinen AM, Pavlidi P, Shatillo A, Sweeney PJ, Merenlender-Wagner A, Kaye J, Orbach A, Nurmi A. Cognitive disturbances in the cuprizone model of multiple sclerosis. GENES BRAIN AND BEHAVIOR 2020; 20:e12663. [PMID: 32372528 DOI: 10.1111/gbb.12663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Cognitive problems frequently accompany neurological manifestations of multiple sclerosis (MS). However, during screening of preclinical candidates, assessments of behaviour in mouse models of MS typically focus on locomotor activity. In the present study, we analysed cognitive behaviour of 9 to 10-week-old female C57Bl/6J mice orally administered with the toxin cuprizone that induces demyelination, a characteristic feature of MS. Animals received 400 mg/kg cuprizone daily for 2 or 4 weeks, and their performance was compared with that of vehicle-treated mice. Cuprizone-treated animals showed multiple deficits in short touchscreen-based operant tasks: they responded more slowly to visual stimuli, rewards and made more errors in a simple rule-learning task. In contextual/cued fear conditioning experiments, cuprizone-treated mice showed significantly lower levels of contextual freezing than vehicle-treated mice. Diffusion tensor imaging showed treatment-dependent changes in fractional anisotropy as well as in axial and mean diffusivities in different white matter areas. Lower values of fractional anisotropy and axial diffusivity in cuprizone-treated mice indicated developing demyelination and/or axonal damage. Several diffusion tensor imaging measurements correlated with learning parameters. Our results show that translational touchscreen operant tests and fear conditioning paradigms can reliably detect cognitive consequences of cuprizone treatment. The suggested experimental approach enables screening novel MS drug candidates in longitudinal experiments for their ability to improve pathological changes in brain structure and reverse cognitive deficits.
Collapse
Affiliation(s)
- Maksym V Kopanitsa
- Charles River Discovery Services, Kuopio, Finland.,UK Dementia Research Institute, Department of Brain Sciences, Imperial College, London, UK
| | | | | | - Ari Suhonen
- Charles River Discovery Services, Kuopio, Finland
| | - Juho Koponen
- Charles River Discovery Services, Kuopio, Finland
| | | | | | - Pavlina Pavlidi
- MSc Programme in Translational Neuroscience, Imperial College, London, UK
| | | | | | | | - Joel Kaye
- Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Aric Orbach
- Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Antti Nurmi
- Charles River Discovery Services, Kuopio, Finland
| |
Collapse
|
11
|
Thonnard D, Callaerts-Vegh Z, D'Hooge R. Differential effects of post-training scopolamine on spatial and non-spatial learning tasks in mice. Brain Res Bull 2019; 152:52-62. [PMID: 31302239 DOI: 10.1016/j.brainresbull.2019.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022]
Abstract
Muscarinic antagonist scopolamine has been extensively used to model amnesia in lab rodents, but most studies have focused on the effects of pre-training scopolamine administration. Here, we examined post-training scopolamine administration in C57BL/6JRj mice. Learning was assessed in three different procedures: odour discrimination in a digging paradigm, visual discrimination in a touchscreen-based setup, and spatial learning in the Morris water maze. Scopolamine administration affected performance in the odour discrimination task. More specifically, scopolamine decreased perseverance, which facilitated reversal learning. Similar results were obtained in the visual discrimination task, but scopolamine did not affect performance in the spatial learning task. It is unlikely that these results can be explained by non-memory-related cognitive effects (e.g., attention), non-cognitive behaviours (e.g., locomotor activity) or peripheral side-effects (e.g., mydriasis). They likely relate to the various neuropharmacological actions of scopolamine.
Collapse
Affiliation(s)
- David Thonnard
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Belgium.
| |
Collapse
|
12
|
Ayabe T, Ohya R, Ano Y. Hop-Derived Iso-α-Acids in Beer Improve Visual Discrimination and Reversal Learning in Mice as Assessed by a Touch Panel Operant System. Front Behav Neurosci 2019; 13:67. [PMID: 31001094 PMCID: PMC6454052 DOI: 10.3389/fnbeh.2019.00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Dementia and cognitive decline have become worldwide health problems due to rapid growth of the aged population in many countries. We previously demonstrated that single or short-term administration of iso-α-acids, hop-derived bitter acids in beer, improves the spatial memory of scopolamine-induced amnesia model mice in the Y-maze and enhances novel object recognition in normal mice via activation of the vagus nerve and hippocampal dopaminergic system. However, these behavioral tests do not replicate the stimulus conditions or response requirements of human memory tests, and so may have poor translational validity. In this report, we investigated the effects of iso-α-acids on visual discrimination (VD) and reversal discrimination (RD) using a touch panel-based operant system similar to that used for human working memory tests. In the VD task, scopolamine treatment reduced correct response rate and prolonged response latency in mice, deficits reversed by prior oral administration of iso-α-acids. In the RD task, administration of iso-α-acids significantly increased correct response rate compared to vehicle administration. Previous studies have reported that dopamine signaling is involved in both VD and RD learning, suggesting that enhancement of dopamine release contributes to improved memory performance in mice treated with iso-α-acids. Taken together, iso-α-acids improve VD and RD learning, which are considered high-order cognitive functions. Given the translational advantages of the touch panel-based operant system, the present study suggests that iso-α-acids could be effective for improvement of working memory in human dementia patients.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama, Japan
| | - Rena Ohya
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama, Japan
| | - Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., Yokohama, Japan
| |
Collapse
|
13
|
Thonnard D, Dreesen E, Callaerts-Vegh Z, D'Hooge R. NMDA receptor dependence of reversal learning and the flexible use of cognitively demanding search strategies in mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:235-244. [PMID: 30529376 DOI: 10.1016/j.pnpbp.2018.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
Cognitive flexibility helps organisms to respond adaptively to environmental changes. Deficits in this executive function have been associated with a variety of brain disorders, and it has been shown to rely on various concomitant neurobiological mechanisms. However, the involvement of the glutamatergic system in general, and NMDA receptors in particular, has been debated. Therefore, we injected C57BL/6 mice repeatedly with low-doses of the non-competitive NMDA receptor antagonist MK-801 (dizocilpine, 0.1 mg/kg, i.p.). Reversal learning and the use of specific cognitive strategies were assessed in a non-spatial discrimination touchscreen task and the Morris water maze (MWM) spatial learning task. In addition, mice were subjected to a non-mnemonic test battery. Although initial acquisition learning was not affected by MK-801 administration, it did induce deficits in reversal learning, both in the non-spatial and spatial task. Defects in non-spatial reversal learning appeared to be caused by perseverative errors. Also, MK-801 administration induced perseverative behaviours as well as inefficient spatial strategy use during MWM reversal learning. These effects could not be reduced to changes in exploratory (anxiety-related) behaviours, nor to motor deficits. This was consistent with results in the non-mnemonic test battery, during which MK-801 evoked hyperlocomotion and subtle motor defects, but failed to alter general motor activity and exploratory behaviours. In conclusion, NMDA receptors appear to be involved in the flexible cognitive processes that underlie reversal learning in spatial as well as non-spatial tasks. Our results also indicate that reversal learning as well as the use of cognitively demanding strategies are more sensitive to NMDA receptor blockage than some other functions that have been suggested to be NMDA receptor dependent.
Collapse
Affiliation(s)
- David Thonnard
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | - Eline Dreesen
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Belgium.
| |
Collapse
|
14
|
Hueston CM, O'Leary JD, Hoban AE, Kozareva DA, Pawley LC, O'Leary OF, Cryan JF, Nolan YM. Chronic interleukin-1β in the dorsal hippocampus impairs behavioural pattern separation. Brain Behav Immun 2018; 74:252-264. [PMID: 30217534 DOI: 10.1016/j.bbi.2018.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 02/04/2023] Open
Abstract
Understanding the long-term consequences of chronic inflammation in the hippocampus may help to develop therapeutic targets for the treatment of cognitive disorders related to stress, ageing and neurodegeneration. The hippocampus is particularly vulnerable to increases in the pro-inflammatory cytokine interleukin-1β (IL-1β), a mediator of neuroinflammation, with elevated levels implicated in the aetiology of neurodegenerative diseases such as Alzheimer's and Parkinson's, and in stress-related disorders such as depression. Acute increases in hippocampal IL-1β have been shown to impair cognition and reduce adult hippocampal neurogenesis, the birth of new neurons. However, the impact of prolonged increases in IL-1β, as evident in clinical conditions, on cognition has not been fully explored. Therefore, the present study utilized a lentiviral approach to induce long-term overexpression of IL-1β in the dorsal hippocampus of adult male Sprague Dawley rats and examine its impact on cognition. Following three weeks of viral integration, pattern separation, a process involving hippocampal neurogenesis, was impaired in IL-1β-treated rats in both object-location and touchscreen operant paradigms. This was coupled with a decrease in the number and neurite complexity of immature neurons in the hippocampus. Conversely, tasks involving the hippocampus, but not sensitive to disruption of hippocampal neurogenesis, including spontaneous alternation, novel object and location recognition were unaffected. Touchscreen operant visual discrimination, a cognitive task involving the prefrontal cortex, was largely unaffected by IL-1β overexpression. In conclusion, these findings suggest that chronically elevated IL-1β in the hippocampus selectively impairs pattern separation. Inflammatory-mediated disruption of adult hippocampal neurogenesis may contribute to the cognitive decline associated with neurodegenerative and stress-related disorders.
Collapse
Affiliation(s)
- Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - James D O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Alan E Hoban
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Danka A Kozareva
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Lauren C Pawley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
15
|
Piiponniemi TO, Parkkari T, Heikkinen T, Puoliväli J, Park LC, Cachope R, Kopanitsa MV. Impaired Performance of the Q175 Mouse Model of Huntington's Disease in the Touch Screen Paired Associates Learning Task. Front Behav Neurosci 2018; 12:226. [PMID: 30333735 PMCID: PMC6176131 DOI: 10.3389/fnbeh.2018.00226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/10/2018] [Indexed: 01/16/2023] Open
Abstract
Cognitive disturbances often predate characteristic motor dysfunction in individuals with Huntington’s disease (HD) and place an increasing burden on the HD patients and caregivers with the progression of the disorder. Therefore, application of maximally translational cognitive tests to animal models of HD is imperative for the development of treatments that could alleviate cognitive decline in human patients. Here, we examined the performance of the Q175 mouse knock-in model of HD in the touch screen version of the paired associates learning (PAL) task. We found that 10–11-month-old heterozygous Q175 mice had severely attenuated learning curve in the PAL task, which was conceptually similar to previously documented impaired performance of individuals with HD in the PAL task of the Cambridge Neuropsychological Test Automated Battery (CANTAB). Besides high rate of errors in PAL task, Q175 mice exhibited considerably lower responding rate than age-matched wild-type (WT) animals. Our examination of effortful operant responding during fixed ratio (FR) and progressive ratio (PR) reinforcement schedules in a separate cohort of similar age confirmed slower and unselective performance of mutant animals, as observed during PAL task, but suggested that motivation to work for nutritional reward in the touch screen setting was similar in Q175 and WT mice. We also demonstrated that pronounced sensorimotor disturbances in Q175 mice can be detected at early touch screen testing stages, (e.g., during “Punish Incorrect” phase of operant pretraining), so we propose that shorter test routines may be utilised for more expedient studies of treatments aimed at the rescue of HD-related phenotype.
Collapse
Affiliation(s)
| | | | | | | | - Larry C Park
- CHDI Management/CHDI Foundation, Los Angeles, CA, United States
| | - Roger Cachope
- CHDI Management/CHDI Foundation, Los Angeles, CA, United States
| | - Maksym V Kopanitsa
- Charles River Discovery Services, Kuopio, Finland.,UK Dementia Research Institute at Imperial College London, Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|