1
|
Wang Y, Shi Y, Yu Y, Chen L, Jiang J, Long J, Xiang P, Duan G. Screening of Synthetic Cathinones and Metabolites in Dried Blood Spots by UPLC-MS-MS. J Anal Toxicol 2021; 45:633-643. [PMID: 33201221 DOI: 10.1093/jat/bkaa106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/01/2019] [Accepted: 10/28/2020] [Indexed: 11/12/2022] Open
Abstract
After its use for decades in clinical screening, dried blood spots (DBS) have recently received considerable attention for their application in various novel psychoactive substances. The goal of this study was to develop and apply a DBS-based assay for 37 synthetic cathinones and their metabolites. Thirty microliters of whole blood sample after administration was spotted onto Whatman FTA classical cards, dried and extracted, and then analyzed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS). The samples were chromatographed on a Waters Acquity UPLC®HSS T3 column (1.8 μm, 2.1 × 100 mm) and then identically packed defender guard cartridges of a Waters Acquity UPLC®HSS T3 column (1.8 μm, 2.1 × 5 mm, 3/pk). The separation was achieved via solvents of 20 mM ammonium acetate/formic acid 0.1% (A) and acetonitrile (B) at a flow rate of 0.25 mL/min. A tandem MS equipped with positive electrospray ionization mode source was used as the detector. Multiple reaction monitoring with the precursor/product ion combinations was used to quantify each analyte. The linear range of synthetic cathinones in the DBS was 2.0-200 ng/mL, and the lowest limit of quantification was 2.0 ng/mL for some synthetic cathinones and 10 ng/mL for others. The precision and accuracy of the results for the validation samples of the synthetic cathinones were within acceptable criteria. DBS sampling offers the advantages of reduced sample volume and convenient sample storage and shipment. This method can be successfully applied to the quantification of synthetic cathinones.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Yan Shi
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Guangfu Xi Road 1347, Shanghai 200063, China
| | - Yingjia Yu
- School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Lizhu Chen
- School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Jiebing Jiang
- School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Jiakun Long
- School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Ping Xiang
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Guangfu Xi Road 1347, Shanghai 200063, China
| | - Gengli Duan
- School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Soares J, Costa VM, Bastos MDL, Carvalho F, Capela JP. An updated review on synthetic cathinones. Arch Toxicol 2021; 95:2895-2940. [PMID: 34100120 DOI: 10.1007/s00204-021-03083-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Cathinone, the main psychoactive compound found in the plant Catha edulis Forsk. (khat), is a β-keto analogue of amphetamine, sharing not only the phenethylamine structure, but also the amphetamine-like stimulant effects. Synthetic cathinones are derivatives of the naturally occurring cathinone that largely entered the recreational drug market at the end of 2000s. The former "legal status", impressive marketing strategies and their commercial availability, either in the so-called "smartshops" or via the Internet, prompted their large spread, contributing to their increasing popularity in the following years. As their popularity increased, the risks posed for public health became clear, with several reports of intoxications and deaths involving these substances appearing both in the social media and scientific literature. The regulatory measures introduced thereafter to halt these trending drugs of abuse have proved to be of low impact, as a continuous emergence of new non-controlled derivatives keep appearing to replace those prohibited. Users resort to synthetic cathinones due to their psychostimulant properties but are often unaware of the dangers they may incur when using these substances. Therefore, studies aimed at unveiling the pharmacological and toxicological properties of these substances are imperative, as they will provide increased expertise to the clinicians that face this problem on a daily basis. The present work provides a comprehensive review on history and legal status, chemistry, pharmacokinetics, pharmacodynamics, adverse effects and lethality in humans, as well as on the current knowledge of the neurotoxic mechanisms of synthetic cathinones.
Collapse
Affiliation(s)
- Jorge Soares
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João Paulo Capela
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- FP-ENAS (Fernando Pessoa Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre), Faculty of Health Sciences, University of Fernando Pessoa, Porto, Portugal.
| |
Collapse
|
3
|
Synthetic cathinones – From natural plant stimulant to new drug of abuse. Eur J Pharmacol 2020; 875:173012. [DOI: 10.1016/j.ejphar.2020.173012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
|
4
|
Riley AL, Nelson KH, To P, López-Arnau R, Xu P, Wang D, Wang Y, Shen HW, Kuhn DM, Angoa-Perez M, Anneken JH, Muskiewicz D, Hall FS. Abuse potential and toxicity of the synthetic cathinones (i.e., “Bath salts”). Neurosci Biobehav Rev 2020; 110:150-173. [DOI: 10.1016/j.neubiorev.2018.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/14/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023]
|
5
|
Santos‐Toscano R, Guirguis A, Davidson C. How preclinical studies have influenced novel psychoactive substance legislation in the UK and Europe. Br J Clin Pharmacol 2020; 86:452-481. [DOI: 10.1111/bcp.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Raquel Santos‐Toscano
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| | - Amira Guirguis
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University Swansea UK
| | - Colin Davidson
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| |
Collapse
|
6
|
Leong HS, Philp M, Simone M, Witting PK, Fu S. Synthetic Cathinones Induce Cell Death in Dopaminergic SH-SY5Y Cells via Stimulating Mitochondrial Dysfunction. Int J Mol Sci 2020; 21:ijms21041370. [PMID: 32085614 PMCID: PMC7073199 DOI: 10.3390/ijms21041370] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 01/22/2023] Open
Abstract
Increasing reports of neurological and psychiatric complications due to psychostimulant synthetic cathinones (SCs) have recently raised public concern. However, the precise mechanism of SC toxicity is unclear. This paucity of understanding highlights the need to investigate the in-vitro toxicity and mechanistic pathways of three SCs: butylone, pentylone, and 3,4-Methylenedioxypyrovalerone (MDPV). Human neuronal cells of SH-SY5Y were cultured in supplemented DMEM/F12 media and differentiated to a neuronal phenotype using retinoic acid (10 μM) and 12-O-tetradecanoylphorbol-13-acetate (81 nM). Trypan blue and lactate dehydrogenase assays were utilized to assess the neurotoxicity potential and potency of these three SCs. To investigate the underlying neurotoxicity mechanisms, measurements included markers of oxidative stress, mitochondrial bioenergetics, and intracellular calcium (Ca2+), and cell death pathways were evaluated at two doses (EC15 and EC40), for each drug tested. Following 24 h of treatment, all three SCs exhibited a dose-dependent neurotoxicity, characterized by a significant (p < 0.0001 vs. control) production of reactive oxygen species, decreased mitochondrial bioenergetics, and increased intracellular Ca2+ concentrations. The activation of caspases 3 and 7 implicated the orchestration of mitochondrial-mediated neurotoxicity mechanisms for these SCs. Identifying novel therapeutic agents to enhance an altered mitochondrial function may help in the treatment of acute-neurological complications arising from the illicit use of these SCs.
Collapse
Affiliation(s)
- Huey Sze Leong
- Centre for Forensic Science, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (H.S.L.); (M.P.)
- Discipline of Pathology, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Morgan Philp
- Centre for Forensic Science, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (H.S.L.); (M.P.)
| | - Martin Simone
- Discipline of Pathology, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Paul Kenneth Witting
- Discipline of Pathology, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
- Correspondence: (P.K.W.); (S.F.); Tel.: +61-2-9114-0524 (P.K.W.); +61-2-9514-8207 (S.F.)
| | - Shanlin Fu
- Centre for Forensic Science, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (H.S.L.); (M.P.)
- Correspondence: (P.K.W.); (S.F.); Tel.: +61-2-9114-0524 (P.K.W.); +61-2-9514-8207 (S.F.)
| |
Collapse
|
7
|
Leyrer-Jackson JM, Nagy EK, Olive MF. Cognitive deficits and neurotoxicity induced by synthetic cathinones: is there a role for neuroinflammation? Psychopharmacology (Berl) 2019; 236:1079-1095. [PMID: 30368582 PMCID: PMC6486871 DOI: 10.1007/s00213-018-5067-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
RATIONALE The number of synthetic derivatives of cathinone, the primary psychoactive alkaloid found in Catha edulis (khat), has risen exponentially in the past decade. Synthetic cathinones (frequently referred to as "bath salts") produce adverse cognitive and behavioral sequelae, share similar pharmacological mechanisms of action with traditional psychostimulants, and may therefore trigger similar cellular events that give rise to neuroinflammation and neurotoxicity. OBJECTIVES In this review, we provide a brief overview of synthetic cathinones, followed by a summary of cognitive deficits in animals and humans that have been documented following acute or repeated exposure. We also summarize growing evidence from in vitro and in vivo studies for synthetic cathinone-induced neurotoxicity, and provide a working hypothetic model of potential cellular mechanisms. RESULTS Synthetic cathinones produce varying effects on markers of monoaminergic terminal function and can increase the formation of reactive oxygen and nitrogen species, induce apoptotic signaling, and cause neurodegeneration and cytotoxicity. We hypothesize that these effects result from biochemical events similar to those induced by traditional psychostimulants. However, empirical evidence for the ability of synthetic cathinones to induce neuroinflammatory processes is currently lacking. CONCLUSIONS Like their traditional psychostimulant counterparts, synthetic cathinones appear to induce neurocognitive dysfunction and cytotoxicity, which are dependent on drug type, dose, frequency, and time following exposure. However, additional studies on synthetic cathinone-induced neuroinflammation are clearly needed, as are investigations into the neurochemical and neuroimmune mechanisms underlying their neurotoxic effects. Such endeavors may lead to novel therapeutic avenues to promote recovery in habitual synthetic cathinone users.
Collapse
Affiliation(s)
| | | | - M. Foster Olive
- Correspondence to: M. Foster Olive, Ph.D. Department of Psychology, Arizona State University, 950 S. McAllister Ave. Tempe, AZ 85287 USA, Phone 1-480-727-9557, Fax 1-480-965-8544,
| |
Collapse
|