1
|
Wang M, Hu S, Fu X, Zhou H, Yang S, Yang C. Neurosteroids: A potential target for neuropsychiatric disorders. J Steroid Biochem Mol Biol 2024; 239:106485. [PMID: 38369032 DOI: 10.1016/j.jsbmb.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Neurosteroids are steroids produced by endocrine glands and subsequently entering the brain, and also include steroids synthesis in the brain. It has been widely known that neurosteroids influence many neurological functions, including neuronal signaling, synaptic adaptations, and neuroprotective effects. In addition, abnormality in the synthesis and function of neurosteroids has been closely linked to neuropsychiatric disorders, such as Alzheimer's disease (AD), schizophrenia (SZ), and epilepsy. Given their important role in brain pathophysiology and disorders, neurosteroids offer potential therapeutic targets for a variety of neuropsychiatric diseases, and that therapeutic strategies targeting neurosteroids probably exert beneficial effects. We therefore summarized the role of neurosteroids in brain physiology and neuropsychiatric disorders, and introduced the recent findings of synthetic neurosteroid analogues for potential treatment of neuropsychiatric disorders, thereby providing insights for further research in the future.
Collapse
Affiliation(s)
- Mengyu Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinghuo Fu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huixuan Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Tang XH, Diao YG, Ren ZY, Zang YY, Zhang GF, Wang XM, Duan GF, Shen JC, Hashimoto K, Zhou ZQ, Yang JJ. A role of GABA A receptor α1 subunit in the hippocampus for rapid-acting antidepressant-like effects of ketamine. Neuropharmacology 2023; 225:109383. [PMID: 36565851 DOI: 10.1016/j.neuropharm.2022.109383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Ketamine can produce rapid-acting antidepressant effects in treatment-resistant patients with depression. Although alterations in glutamatergic and GABAergic neurotransmission in the brain play a role in depression, the precise molecular mechanisms in these neurotransmission underlying ketamine's antidepressant actions remain largely unknown. Mice exposed to FSS (forced swimming stress) showed depression-like behavior and decreased levels of GABA (γ-aminobutyric acid), but not glutamate, in the hippocampus. Ketamine increased GABA levels and decreased glutamate levels in the hippocampus of mice exposed to FSS. There was a correlation between GABA levels and depression-like behavior. Furthermore, ketamine increased the levels of enzymes and transporters on the GABAergic neurons (SAT1, GAD67, GAD65, VGAT and GAT1) and astrocytes (EAAT2 and GAT3), without affecting the levels of enzymes and transporters (SAT2, VGluT1 and GABAAR γ2) on glutamatergic neurons. Moreover, ketamine caused a decreased expression of GABAAR α1 subunit, which was specifically expressed on GABAergic neurons and astrocytes, an increased GABA synthesis and metabolism in GABAergic neurons, a plasticity change in astrocytes, and an increase in ATP (adenosine triphosphate) contents. Finally, GABAAR antagonist bicuculline or ATP exerted a rapid antidepressant-like effect whereas pretreatment with GABAAR agonist muscimol blocked the antidepressant-like effects of ketamine. In addition, pharmacological activation and inhibition of GABAAR modulated the synthesis and metabolism of GABA, and the plasticity of astrocytes in the hippocampus. The present data suggest that ketamine could increase GABA synthesis and astrocyte plasticity through downregulation of GABAAR α1, increases in GABA, and conversion of GABA into ATP, resulting in a rapid-acting antidepressant-like action. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Xiao-Hui Tang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Gang Diao
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhuo-Yu Ren
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan-Yu Zang
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Guang-Fen Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xing-Ming Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Gui-Fang Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jin-Chun Shen
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Souza-Teodoro LH, Andrade LHS, Carvalho LA. Could be dehydroepiandrosterone (DHEA) a novel target for depression? JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
4
|
Gubb SJA, Brcic L, Underwood JFG, Kendall KM, Caseras X, Kirov G, Davies W. Medical and neurobehavioural phenotypes in male and female carriers of Xp22.31 duplications in the UK Biobank. Hum Mol Genet 2021; 29:2872-2881. [PMID: 32766777 PMCID: PMC7566349 DOI: 10.1093/hmg/ddaa174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Deletions spanning the STS (steroid sulfatase) gene at Xp22.31 are associated with X-linked ichthyosis, corneal opacities, testicular maldescent, cardiac arrhythmia, and higher rates of developmental and mood disorders/traits, possibly related to the smaller volume of some basal ganglia structures. The consequences of duplication of the same genomic region have not been systematically assessed in large or adult samples, although evidence from case reports/series has indicated high rates of developmental phenotypes. We compared multiple measures of physical and mental health, cognition and neuroanatomy in male (n = 414) and female (n = 938) carriers of 0.8–2.5 Mb duplications spanning STS, and non-carrier male (n = 192, 826) and female (n = 227, 235) controls from the UK Biobank (recruited aged 40–69 from the UK general population). Clinical and self-reported diagnoses indicated a higher prevalence of inguinal hernia and mania/bipolar disorder respectively in male duplication carriers, and a higher prevalence of gastro-oesophageal reflux disease and blistering/desquamating skin disorder respectively in female duplication carriers; duplication carriers also exhibited reductions in several depression-related measures, and greater happiness. Cognitive function and academic achievement did not differ between comparison groups. Neuroanatomical analysis suggested greater lateral ventricle and putamen volume in duplication carriers. In conclusion, Xp22.31 duplications appear largely benign, but could slightly increase the likelihood of specific phenotypes (although results were only nominally-significant). In contrast to deletions, duplications might protect against depressive symptoms, possibly via higher STS expression/activity (resulting in elevated endogenous free steroid levels), and through contributing towards an enlarged putamen volume. These results should enable better genetic counselling of individuals with Xp22.31 microduplications.
Collapse
Affiliation(s)
- Samuel J A Gubb
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Lucija Brcic
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Jack F G Underwood
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Kimberley M Kendall
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Xavier Caseras
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - George Kirov
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - William Davies
- Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom.,School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
5
|
Ni Y, Yang X, Zheng L, Wang Z, Wu L, Jiang J, Yang T, Ma L, Fu Z. Lactobacillus
and
Bifidobacterium
Improves Physiological Function and Cognitive Ability in Aged Mice by the Regulation of Gut Microbiota. Mol Nutr Food Res 2019; 63:e1900603. [DOI: 10.1002/mnfr.201900603] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/16/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and BioengineeringZhejiang University of Technology China
| | - Xin Yang
- College of Biotechnology and BioengineeringZhejiang University of Technology China
| | - Liujie Zheng
- College of Biotechnology and BioengineeringZhejiang University of Technology China
| | - Zhe Wang
- College of Biotechnology and BioengineeringZhejiang University of Technology China
| | - Lianxin Wu
- College of Biotechnology and BioengineeringZhejiang University of Technology China
| | - Jinlu Jiang
- College of Biotechnology and BioengineeringZhejiang University of Technology China
| | - Tianqi Yang
- College of Biotechnology and BioengineeringZhejiang University of Technology China
| | - Lingyan Ma
- College of Biotechnology and BioengineeringZhejiang University of Technology China
| | - Zhengwei Fu
- College of Biotechnology and BioengineeringZhejiang University of Technology China
| |
Collapse
|
6
|
Dehydroepiandrosterone sulfate improves visceral sensation and gut barrier in a rat model of irritable bowel syndrome. Eur J Pharmacol 2019; 852:198-206. [DOI: 10.1016/j.ejphar.2019.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
|
7
|
Haduch A, Daniel WA. The engagement of brain cytochrome P450 in the metabolism of endogenous neuroactive substrates: a possible role in mental disorders. Drug Metab Rev 2019; 50:415-429. [PMID: 30501426 DOI: 10.1080/03602532.2018.1554674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current state of knowledge indicates that the cerebral cytochrome P450 (CYP) plays an important role in the endogenous metabolism in the brain. Different CYP isoenzymes mediate metabolism of many endogenous substrates such as monoaminergic neurotransmitters, neurosteroids, cholesterol, vitamins and arachidonic acid. Therefore, these enzymes may affect brain development, susceptibility to mental and neurodegenerative diseases and may contribute to their pathophysiology. In addition, they can modify the therapeutic effects of psychoactive drugs at the place of their target action in the brain, where the drugs can act by affecting the metabolism of endogenous substrates. The article focuses on the role of cerebral CYP isoforms in the metabolism of neurotransmitters, neurosteroids, and cholesterol, and their possible involvement in animal behavior, as well as in stress, depression, schizophrenia, cognitive processes, learning, and memory. CYP-mediated alternative pathways of dopamine and serotonin synthesis may have a significant role in the local production of these neurotransmitters in the brain regions where the disturbances of these neurotransmitter systems are observed in depression and schizophrenia. The local alternative synthesis of neurotransmitters may be of great importance in the brain, since dopamine and serotonin do not pass the blood-brain barrier and cannot be supplied from the periphery. In vitro studies indicate that human CYP2D6 catalyzing dopamine and serotonin synthesis is more efficient in these reactions than the rat CYP2D isoforms. It suggests that these alternative pathways may have much greater significance in the human brain but confirmation of these assumptions requires further studies.
Collapse
Affiliation(s)
- Anna Haduch
- a Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology , Polish Academy of Sciences , Kraków , Poland
| | - Władysława Anna Daniel
- a Department of Pharmacokinetics and Drug Metabolism, Institute of Pharmacology , Polish Academy of Sciences , Kraków , Poland
| |
Collapse
|
8
|
Ratner MH, Kumaresan V, Farb DH. Neurosteroid Actions in Memory and Neurologic/Neuropsychiatric Disorders. Front Endocrinol (Lausanne) 2019; 10:169. [PMID: 31024441 PMCID: PMC6465949 DOI: 10.3389/fendo.2019.00169] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Memory dysfunction is a symptomatic feature of many neurologic and neuropsychiatric disorders; however, the basic underlying mechanisms of memory and altered states of circuitry function associated with disorders of memory remain a vast unexplored territory. The initial discovery of endogenous neurosteroids triggered a quest to elucidate their role as neuromodulators in normal and diseased brain function. In this review, based on the perspective of our own research, the advances leading to the discovery of positive and negative neurosteroid allosteric modulators of GABA type-A (GABAA), NMDA, and non-NMDA type glutamate receptors are brought together in a historical and conceptual framework. We extend the analysis toward a state-of-the art view of how neurosteroid modulation of neural circuitry function may affect memory and memory deficits. By aggregating the results from multiple laboratories using both animal models for disease and human clinical research on neuropsychiatric and age-related neurodegenerative disorders, elements of a circuitry level view begins to emerge. Lastly, the effects of both endogenously active and exogenously administered neurosteroids on neural networks across the life span of women and men point to a possible underlying pharmacological connectome by which these neuromodulators might act to modulate memory across diverse altered states of mind.
Collapse
|
9
|
Neuroendocrine and inflammatory responses to DHEA administration in young healthy women. Pharmacol Biochem Behav 2018; 175:19-23. [DOI: 10.1016/j.pbb.2018.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
|