1
|
Matsuda KI, Takahashi T, Morishita S, Tanaka M. Histological analysis of neuronal changes in the olfactory cortex during pregnancy. Heliyon 2024; 10:e26780. [PMID: 38444488 PMCID: PMC10912243 DOI: 10.1016/j.heliyon.2024.e26780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Fluctuations in olfactory sensitivity are widely known to occur during pregnancy and may be responsible for hyperemesis gravidarum. These changes are thought to be caused by structural and functional alterations in neurons in response to marked changes of the hormonal milieu. In this study, we examined changes in neurons in the olfactory cortex during pregnancy and after delivery in rats. Dendritic spine densities were measured in the piriform cortex (PIR) and posterolateral cortical amygdala (COApl), which are involved in olfaction. The results showed increased numbers of dendritic spines in the PIR in mid-pregnancy and in the COApl during early and late pregnancy, but not in the motor area of the cerebral cortex, indicating a correlation with changes in olfactory sensitivity during pregnancy. Immunohistochemical analysis of expression of ovarian hormone receptors in these brain regions revealed a decrease in the number of estrogen receptor α-positive cells during pregnancy in the PIR and during pregnancy and the postpartum period in the COApl. Regarding pregnancy-related peptide hormones, oxytocin receptors were expressed in the PIR and COApl, while prolactin receptors were not found in these regions. Accordingly, oxytocin-containing neurites were distributed in both regions. These results suggest that the balance of these hormonal signals has an effect on olfactory sensitivity in pregnant females.
Collapse
Affiliation(s)
- Ken Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoki Takahashi
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Sae Morishita
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Torres Irizarry VC, Jiang Y, He Y, Xu P. Hypothalamic Estrogen Signaling and Adipose Tissue Metabolism in Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:898139. [PMID: 35757435 PMCID: PMC9218066 DOI: 10.3389/fendo.2022.898139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity has become a global epidemic, and it is a major risk factor for other metabolic disorders such as type 2 diabetes and cardiometabolic disease. Accumulating evidence indicates that there is sex-specific metabolic protection and disease susceptibility. For instance, in both clinical and experimental studies, males are more likely to develop obesity, insulin resistance, and diabetes. In line with this, males tend to have more visceral white adipose tissue (WAT) and less brown adipose tissue (BAT) thermogenic activity, both leading to an increased incidence of metabolic disorders. This female-specific fat distribution is partially mediated by sex hormone estrogens. Specifically, hypothalamic estrogen signaling plays a vital role in regulating WAT distribution, WAT beiging, and BAT thermogenesis. These regulatory effects on adipose tissue metabolism are primarily mediated by the activation of estrogen receptor alpha (ERα) in neurons, which interacts with hormones and adipokines such as leptin, ghrelin, and insulin. This review discusses the contribution of adipose tissue dysfunction to obesity and the role of hypothalamic estrogen signaling in preventing metabolic diseases with a particular focus on the VMH, the central regulator of energy expenditure and glucose homeostasis.
Collapse
Affiliation(s)
- Valeria C. Torres Irizarry
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| | - Yuwei Jiang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Yuwei Jiang, ; Yanlin He, ; Pingwen Xu,
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
- *Correspondence: Yuwei Jiang, ; Yanlin He, ; Pingwen Xu,
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Yuwei Jiang, ; Yanlin He, ; Pingwen Xu,
| |
Collapse
|
3
|
Yamaguchi S, Abe Y, Maejima S, Tsukahara S. Sexual experience reduces neuronal activity in the central part of the medial preoptic nucleus in male rats during sexual behavior. Neurosci Lett 2018; 685:155-159. [DOI: 10.1016/j.neulet.2018.08.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/30/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
|
4
|
Balabanov IE, Matsuda KI, Mori H, Yamada S, Kitagawa K, Yamamoto Y, Tsukahara S, Tanaka M. Neuronal activity in the sagittalis nucleus of the hypothalamus after ovarian steroid hormone manipulation and sexual behavior in female rat. Neurosci Lett 2018; 671:25-28. [PMID: 29421537 DOI: 10.1016/j.neulet.2018.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 11/26/2022]
Abstract
During extended observation of estrogen receptor (ER) α-immunoreactive neurons in the hypothalamus, we previously identified a novel nucleus, the Sagittalis Nucleus of the Hypothalamus (SGN), in the interstitial area between the arcuate nucleus and the ventromedial hypothalamic nucleus. The SGN exhibits sexual dimorphism in its volume and cell count, and estrous cycle related variations in ERα-immunoreactivity. These characteristics of the SGN implicate the nucleus in sex-biased brain functions and behaviors. In this study, we examined involvement of the SGN in sexual arousal in female rats. Immunohistochemical staining of c-Fos, a marker of neuronal activity was performed after administration of an estrus-inducing dose of estrogen and progesterone in ovariectomized female rats. Analysis of microscopic images showed a significant increase in the number of c-Fos-expressing neurons in the SGN following hormonal manipulation. Moreover, neuronal activity in the region exhibited a further increase after each animal was coupled with a male and allowed to mate. These results suggest that the SGN plays an important role in sexual activity in female rat.
Collapse
Affiliation(s)
- Ivaylo Evgueniev Balabanov
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; Graduate School of Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands; European Graduate School of Neuroscience (Euron)-Japan Double Degree Program, The Netherlands
| | - Ken Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Hiroko Mori
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shunji Yamada
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keito Kitagawa
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukina Yamamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; Kyoto College of Nutritional & Medical Sciences, Kyoto, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|