1
|
Van Greenen JD, Hockman D. FGF20. Differentiation 2024; 139:100737. [PMID: 38007375 DOI: 10.1016/j.diff.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Fibroblast growth factor 20 (FGF20) is a neurotrophic factor and a member of the FGF9 subfamily. It was first identified in Xenopus embryos and was isolated shortly thereafter from the adult rat brain. Its receptors include FGFR4, FGFR3b, FGFR2b and the FGFRc splice forms. In adults it is highly expressed in the brain, while it is expressed in a variety of regions during embryonic development, including the inner ear, heart, hair placodes, mammary buds, dental epithelium and limbs. As a result of its wide-spread expression, FGF20 mouse mutants exhibit a variety of phenotypes including congenital deafness, lack of hair, small kidneys and delayed mammary ductal outgrowth. FGF20 is also associated with human diseases including Parkinson's Disease, cancer and hereditary deafness.
Collapse
Affiliation(s)
- Justine D Van Greenen
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
2
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
3
|
Vittori C, Jeansonne D, Yousefi H, Faia C, Lin Z, Reiss K, Peruzzi F. Mechanisms of miR-3189-3p-mediated inhibition of c-MYC translation in triple negative breast cancer. Cancer Cell Int 2022; 22:204. [PMID: 35642054 PMCID: PMC9158314 DOI: 10.1186/s12935-022-02620-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the lack of estrogen receptor, progesterone receptor, and HER2. Our lab previously characterized miR-3189-3p as a microRNA with potent anti-cancer activity against glioblastoma. Here, we hypothesized a similar activity in TNBC cells. As miR-3189-3p is predicted to target a variety of RNA binding proteins, we further hypothesized an inhibitory effect of this miRNA on protein synthesis. METHODS MDA-MB-231 and MDA-MB-468 cells were used to investigate the effect of miR-3189-3p on cell proliferation, migration, and invasion. TGCA database was used to analyze the expression of miR-3189-3p, c-MYC, 4EPB1, and eIF4E in breast cancer. Western blotting and RT-qPCR assays were used to assess the expression of selected proteins and RNAs after transfections. RESULTS Although c-MYC is not a predicted gene target for miR-3189-3p, we discovered that c-MYC protein is downregulated in miRNA-treated TNBC cells. We found that the downregulation of c-MYC by miR-3189-3p occurs in both normal growth conditions and in the absence of serum. The mechanism involved the direct inhibition of eIF4EBP1 by miR-3189-3p. Additionally, we found that miR-3189-3p could negatively affect cap-independent translation mediated by internal ribosome entry sites (IRES) or by m6A. Finally, miR-3189-3p sensitized TNBC cells to doxorubicin. CONCLUSION Overall, results indicated that miR-3189-3p exerts its anti-tumor activity through targeting translational regulatory proteins leading to an impairment in c-MYC translation, and possibly other oncogenic factors, suggesting that miR-3189-3p, alone or in combination, could be a valuable therapeutic approach against a malignancy with few treatment options.
Collapse
Affiliation(s)
- Cecilia Vittori
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA
| | - Duane Jeansonne
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA
| | - Hassan Yousefi
- Department of Biochemistry, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA, USA
| | - Celeste Faia
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA
| | - Zhen Lin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center and Tulane Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA
| | - Krzysztof Reiss
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA
| | - Francesca Peruzzi
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA.
| |
Collapse
|
4
|
Quan W, Li J, Liu L, Zhang Q, Qin Y, Pei X, Chen J. Quantitative assessment of the effect of FGF20 rs1721100 and rs12720208 variant on the risk of sporadic Parkinson's disease: a meta-analysis. Neurol Sci 2021; 43:3145-3152. [PMID: 34845561 DOI: 10.1007/s10072-021-05754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES While many studies have investigated the associations between fibroblast growth factor 20 (FGF20) rs1721100 (C/G) and rs12720208 (C/T) polymorphisms and susceptibility to Parkinson's disease (PD), their results are controversial. Our present meta-analysis estimated the overall association between FGF20 rs1721100 and rs12720208 polymorphisms and the risk of sporadic PD. METHODS We performed a comprehensive literature search of the PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure, and Wanfang Medicine electronic databases, which was updated in April 2021. Based on strict inclusion and exclusion criteria, the analysis included a total of 10 papers involving 14 studies with 5262 cases of PD and 6075 controls. Review Manager 5.4 software was used to assess the available data from each study. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the association between the FGF20 rs1721100 and rs12720208 polymorphisms and sporadic PD risk. RESULTS Our results showed that the FGF20 rs1721100 G allele frequency and genotype distribution did not differ between PD patients and controls. Similarly, the FGF20 rs12720208 T allele frequency and genotype distribution did not differ significantly between the two groups. A subgroup analysis of Asian and Caucasian populations also showed the same results. CONCLUSIONS The results of this meta-analysis indicated that neither the rs1721100 C/G nor the rs12720208 C/T variants were associated with sporadic PD susceptibility.
Collapse
Affiliation(s)
- Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Li Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Qinghui Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Yidan Qin
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Xiaochen Pei
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130000, Jilin, China.
| |
Collapse
|
5
|
Pu JL, Lin ZH, Zheng R, Yan YQ, Xue NJ, Yin XZ, Zhang BR. Association analysis of SYT11, FGF20, GCH1 rare variants in Parkinson's disease. CNS Neurosci Ther 2021; 28:175-177. [PMID: 34674384 PMCID: PMC8673698 DOI: 10.1111/cns.13745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/28/2023] Open
Affiliation(s)
- Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Hao Lin
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ran Zheng
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Qun Yan
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Nai-Jia Xue
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin-Zhen Yin
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Md Dom ZI, Satake E, Skupien J, Krolewski B, O'Neil K, Willency JA, Dillon ST, Wilson JM, Kobayashi H, Ihara K, Libermann TA, Pragnell M, Duffin KL, Krolewski AS. Circulating proteins protect against renal decline and progression to end-stage renal disease in patients with diabetes. Sci Transl Med 2021; 13:13/600/eabd2699. [PMID: 34193611 DOI: 10.1126/scitranslmed.abd2699] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/31/2020] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
Diabetic kidney disease (DKD) and its major clinical manifestation, progressive renal decline that leads to end-stage renal disease (ESRD), are a major health burden for individuals with diabetes. The disease process that underlies progressive renal decline comprises factors that increase risk as well as factors that protect against this outcome. Using untargeted proteomic profiling of circulating proteins from individuals in two independent cohorts with type 1 and type 2 diabetes and varying stages of DKD followed for 7 to 15 years, we identified three elevated plasma proteins-fibroblast growth factor 20 (OR, 0.69; 95% CI, 0.54 to 0.88), angiopoietin-1 (OR, 0.72; 95% CI, 0.57 to 0.91), and tumor necrosis factor ligand superfamily member 12 (OR, 0.75; 95% CI, 0.59 to 0.95)-that were associated with protection against progressive renal decline and progression to ESRD. The combined effect of these three protective proteins was demonstrated by very low cumulative risk of ESRD in those who had baseline concentrations above median for all three proteins, whereas the cumulative risk of ESRD was high in those with concentrations below median for these proteins at the beginning of follow-up. This protective effect was shown to be independent from circulating inflammatory proteins and clinical covariates and was confirmed in a third cohort of diabetic individuals with normal renal function. These three protective proteins may serve as biomarkers to stratify diabetic individuals according to risk of progression to ESRD and might also be investigated as potential therapeutics to delay or prevent the onset of ESRD.
Collapse
Affiliation(s)
- Zaipul I Md Dom
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Eiichiro Satake
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Jan Skupien
- Department of Metabolic Diseases, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Bozena Krolewski
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Kristina O'Neil
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Jill A Willency
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Simon T Dillon
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.,Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jonathan M Wilson
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Hiroki Kobayashi
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Katsuhito Ihara
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Towia A Libermann
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.,Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | - Kevin L Duffin
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Andrzej S Krolewski
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA. .,Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
7
|
Role of Apolipoprotein E, Cathepsin D, and Brain-Derived Neurotrophic Factor in Parkinson’s Disease: A Study from Eastern India. Neuromolecular Med 2019; 21:287-294. [DOI: 10.1007/s12017-019-08548-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 05/17/2019] [Indexed: 02/05/2023]
|
8
|
Ghosh A, Sadhukhan T, Giri S, Biswas A, Das SK, Ray K, Ray J. Dopamine β Hydroxylase (DBH) is a potential modifier gene associated with Parkinson's disease in Eastern India. Neurosci Lett 2019; 706:75-80. [PMID: 31082450 DOI: 10.1016/j.neulet.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/02/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is the debilitating movement disorder, distinguished by dopaminergic and norepinephrinergic neurodegeneration. Apart from candidate gene mutations, several modifier loci have been reported to be associated with the disease manifestation. The Dopamine β-Hydroxylase (DBH) maintains cellular dopamine content and regulates dopamine turn over in neurons. Genetic polymorphisms of DBH are associated with PD and are found to alter plasma DBH activity in patients compared to healthy controls. Therefore, DBH activity in plasma could be a potential and easily detectable biomarkers for alteration of dopaminergic neuronal function in PD. METHODS Plasma DBH activity has been assessed among PD cases and age-matched controls to identify correlation with PD. To elucidate the role of DBH polymorphisms in Eastern Indian PD patients, three SNPs (rs1611115, rs1108580 and rs129882) were selected and screened by PCR-RFLP and DNA sequencing analysis. RESULTS The T-allele of rs129882 was more prevalent among patients than controls posing risk (p-value = 0.02, OR = 1.404, 95% CI = 1.047-1.883) towards PD. The dual-Luciferase assay in SHSY5Y cell line revealed that the T-allele of rs129882 increases Luciferase signal (p = 0.0269). However, the rs1611115 and rs1108580 did not show association with PD; plasma DBH activity was not significantly different between patients and controls (p-value > 0.05). Haplotypes constructed with three SNPs showed that the CAT haplotype to pose risk, TAC haplotype to provide protection against early disease onset and CGT being protective against non-motor symptoms. CONCLUSION These data suggest that DBH might influence the susceptibility of PD.
Collapse
Affiliation(s)
- Arunibha Ghosh
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Tamal Sadhukhan
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Subhajit Giri
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Arindam Biswas
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | | | - Kunal Ray
- ATGC Diagnostics Pvt. Ltd., Kolkata, India
| | - Jharna Ray
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India.
| |
Collapse
|